MHD EQUATIONS FOR PARAMAGNETIC MEDIA
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The conservation laws are used to obtain phenomenologically the
complete system of equations of motion of a conductive paramagnetic
fluid in a magnetic field. In addition to the usual MHD equations (with
additional terms accounting for the magnetization of the medium), this
system includes the equation for the rate of change of the magnetic
moment.

The hydrodynamic equations for a fluid with internal rotation have been
obtained in [1] and extended in [2] to the case of the paramagnetic
properties resulting from this rotation: here the fluid was considered
nonconducting. The analysis of {2] is extended to the case of a fluid
with nonzero electrical conductivity. This will be the same extension
of MHD as the theory of |1, 2] is for conventional hydrodynamics.

$1. The intensity of the motion of the medium in
question is characterized at each point by the hydro-
dynamic velocity v and by the bulk density K of the
internal moment of momentum. The latter is con~
nected with the bulk density M of the magnetic moment
by the relation

M=K, (1.1)
where v is the gyromagnetic ratio. The quantities K
and M are the macroscopic characteristics of the
electronic and nuclear motions, both orbital and spin.

We shall make use of the phenomenological scheme
for the derivation of the equations of motion of a con-
tinuum, proposed by Landau and used in [3] and {1,2].
We start from the following equations.

The macroscopic equations expressing the con-
servation of mass, energy, momentum (equation of
motion), and moment of momentum are as follows:

8o | 8t +- div (pv) =0, (1.2)
9E |9t + divQ =0, (1.3)
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Here E is the energy bulk density, Q and Gjj; are the energy flux
density and moment of momentum density, o;} is the stress sensor, and
p is the pressure.

The equations for the change of the internal mo-
ment of momentum and entropy are as follows:

0Ky | 8 . (1.6)
T"i— o2, (Vi) == fu,
pT(3s/0t +vVs) =F. (1.7)

From the field equations in a moving conductive
medium [4]

OB [ 3t = rot (vxB) — ArotrotH,

(A = ¢%/4no), (1.8)
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divB=0 (H =B — 4rM). (1.9)

Assuming that Lik = p(xjv — xgvj), after simple
calculations [1] we find from (1.4)—(1.6) that

fin = 0Oni — o — Ogsn | 8z
gint = Gy — vy(Lan

Kip) -+ zion — 2pog — p(2idp — z6by) (1.10)

Here s is the entropy per unit mass, T is the absolute temperature,
fik and F are the nonconvective parts of the variations of the correspond-
ing quantites (F is a dissipative function), B is the magnetic induction,

. and o is the electrical conductivity of the fluid.

From (1.1), (1.6), and (1.10) follows the equation
for the magnetization:
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It remains for us to find on what quantities and how
E, Q, ojk, 8ikl, and F depend.

§2. The energy E is made up of the kinetic energy
of the moving fluid, the field energy in the medium,
and the internal energy of the paramagnetic substance:
o

2
The known thermodynamic relation [4]
o0E H B

e = M.
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permits writing E in the form

2 2%
:%-+§—_BM+U(p,s,MZ)_ (2.2)
T

The magnetization of a paramagnetic substance is
always small. Therefore, in the expansion of U in
powers of M? it is sufficient to retain terms of zero
and first order:

M2
U= Uo(p, 3)-—'—‘5;

Comparing this expression for E with (2.1), we
find that

Ey—= UO(p,s)-i—EM;(M—uB)- (2.3)

The equilibrium condition E = min yields the equi-
librium expression for the magnetization
M=xB, (2.4)

where® > 0 (paramagnetism). From the thermody-
namic identity for the internal energy

dEy = pTds + wdp +

+ %=1 (M — xB)dM — MdB + '2d(BM), (2.5)
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and the definition of enthalpy, w = p~*(Ey + p), follows
the expression for the differential pressure:

dp = —pTds + pdw —
— %~1(M — xB)dM -+ MdB — 1/,d(BM) . {2.6)

88. Now let us find the expressions for the quan-
tities Q, oik, gik], and F. We differentiate (2.1) with
respect to time, making use of (2.5). In the resulting
expression we substitute the time derivatives of p, v,
s, B, and M, taken from (1.2), (1.4), (1.7), (1.8), and
(l 11), and w1th the aid of (1.9 and (2.6) we obtain,
after transformations (see [1,2]).
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where (ov) = ojirk, (g, M —nB) = gijk(Mg — ®By).
Comparing (3.1) with (1.3), we conclude that Q is
determined by the expression following the div symbol
in the left-hand side of (3.1), and
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For the further calculations it is convenient to
write the stress tensor in the form of the sum of the
symmetric and antisymmetric parts

Gir == Sin + eind, (3.3)

and symmetrize all the terms in the right-hand side
of (3.2). The condition F > 0 (law of increasing en-
tropy) makes it possible to determine the form of
A, Sik, gik, and F.

Retaining in F only the terms which are quadratic
in the quantities characterizing the deviation from
equilibrium, we have

:y(MXB)~—:—(M~—uB)—%Mx(M*B), (3.4)
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Here 7ik is the usual viscous stress tensor, and o, T,

}\, Gla 52’ 6‘3 =0
§4. Substituting the expressions for ojx and gik; =
= ejkm8m} into (1.4) and (1.11), we obtain
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Equations (4.1), (1.2), (1.8), and (1.9) form the
complete system of equations of motion of the medium
in question; for w = M = 0theybecome the conventional
MHD equations (4).

The following basic physical effects develop with in-
teractionof the magnetic and hydrodynamic phenomena.

1°. Currents are induced in a conducting fluid mov-
ing in an applied magnetic field:

{a) the field of these currents alters the original
magnetic field;

(b) interaction of the currents and the field creates
an electromagnetic force which alters the original
motion.

These two effects are the basis for the various
phenomena which are studied in conventional MHD,
where the magnetization of the fiuid is not considered.
Additional effects are associated with taking this mag-
netization into account,

2°. The applied field magnetizes the medium:

{c) interaction of the magnetic moment with the
field leads to the appearance of additional pondero~
motive forces in the equation of motion;

(d) the magnetic field of the currents induced by
the motion of the fluid (see (a) above) alters the mag-
netization;

(e) the variation of the density of the medium result-
ing from compressibility is accompanied by a vari-
ation of the magnetic moment density.

One remark must be made in conclusion. In deriving the equations
of motion, the use of (2.1) for the energy density E was essential. The
hydrodynamic velocity v appears in (2.1) through 1/2pv® But for a
fluid with internal rotation v can also appear in E through the expression
characterizing the relation between the internal and "external® rotations
(with the angular velocity @ = 1/2 rotv). The necessity for the relation
follows from conservation of the total moment of momertum. The
corresponding expression was found in [2] and has the form K = M(Q/y).

In the present study this expression has not been taken into account,
since it was found in [2]that this would only lead to the appearance in
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certain terms of (4.1) of the "gyromagnetic field” Q/y, summed with
B, and estimates show that this term is small in comparison with B for
all reasonable values of B and Q.
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