A QUANTUM-KINETIC APPROACH TO THE THEORY OF NUCLEAR QUADRUPOLE RELAXATION

M.A. MARTSEMJUK and I.G. SHAPOSHNIKOV
Department of Theoretical Physics, University of Perm, Perm (U.S.S.R.)

ABSTRACT

A generalization of the approach to the magnetic resonance and relaxation problems based on the treating of the lattice as a classical system with random parameters is presented. The main point is taking into account the mutual influence of the spin system and the lattice motions more completely than it conventionally used to be done. The method developed is applied to the problem of the nuclear quadrupole relaxation due to the random rotations of nuclei with $I=3 / 2$ in the case of the axially symmetric electric field gradient. The relaxation time temperature dependence is obtained in the temperature region where the Bayer theory is not valid.

INTRODUCTION

To study the magnetic resonance and relaxation phenomena, in particular, the nuclear quadrupole relaxation problems, different methods of the quantum theory of non-equilibrium processes are used. In many cases the lattice is treated as a classical system with random parameters (random trajectory method). When realizing this approach, one usually takes account of the fact that the spin system motion is modulated by the random lattice motion but neglects the backward influence of the spin system on the lattice motion. Technically, one puts down the quantum mechanical equation of motion for the spin system with Hamiltonian containing the lattice random parameters but uses the Einstein-Fokker equation for these parameters only, and then one tries to use the distribution function given by this Binstein-Fokker equation to get average characteristics of the spin system motion (see, for example, (ref.1). In the paper presented a generalization of this procedure is proposed
aimed at the taking into account the mutual influence of the spin system and lattice motions more completely.

The main points of the method here proposed are these: since the Hamiltonian $H(t)$ of the spin system contains the lattice random parameters $x_{i}(t)$, the spin system state vector components $c_{m}(t)$ are the random functions, too (the spin system states are supposed to be pure); the states of the whole
system consisting of the spin system and the lattice as sub-systems are described statistically by means of the distribution function $W\left(c_{m}, x_{i}, t\right)$; the Schrödinger equation for c_{m} and the classical dynamical equations for x_{i} with regular and random "forces" (to get these equations, one has to know the concrete kind of the lattice motion in question) are to be taken as the Langevin equations of the problem; in the way known from the theory of random processes (see (ref. 2)), these equations lead to the Einstein-Fokker equation for W; finally, the kinetic theory method similar to that used in the theory of gases with inner degrees of freeedom (ref. 3) give the equations of motion for the first order moments $\left\langle\varphi_{\alpha}\right\rangle$ (t) of the random functions $\varphi_{\alpha}\left(c_{m}, x_{i}\right)$ of t chosen so as to make it possible to obtain the macroscopic coordinates of the spin system we are interested in; such a choice, like the choice of macroscopic coordinates themselves, is always a hypothesis. This method makes no use of any perturbation theory technics, therefore it allows one to consider the relaxation problems in the wider temperature region than the conventional methods can do. The procedure outlined is described here-after more in detail and then applied to the Bayer problem (ref. 4); it gives some new results concerning the relaxation time temperature dependence which can be checked up experimentally.

RESULTS

General approach

Let us put down the classical equations of motion for x_{1} in the form
$\dot{x}_{i}=\mathbf{v}_{\mathbf{i}}+\mathbf{I}_{\mathbf{i}}$
where $\nabla_{i}(x, t)$ and $f_{i}(x, t)$ with $x \equiv\left\{x_{i}\right\}$ are regular and random functions respectively. In many cases of interest f_{i} are δ-correlated with respect to t
$\left\langle I_{i}(x, t) I_{k}\left(x^{\prime}, t^{\prime}\right)\right\rangle=c_{i k}\left(x, x^{\prime}, t\right) \delta\left(t-t^{\prime}\right)$
(white noise hypothesis) which certainly doesn't suppose the 8 -cor-
relation of x_{i}; here and hereafter $\langle>$ denotes the statistical averaging. The Schrödinger equation for the spin system is
$i \hbar_{\mathrm{i}}^{\mathrm{m}}=\sum_{\mathrm{n}} \mathrm{H}_{\mathrm{man}} \mathrm{c}_{\mathrm{n}}$
For $y \equiv\left\{x_{i}, \operatorname{Re} c_{m}\right.$, In $\left.c_{m}\right\}$ it follows from (1)-(3) that
$\dot{\mathbf{Y}}_{\mathbf{p}}=\mathbf{V}_{\mathrm{p}}+\mathrm{F}_{\mathrm{p}}$
with regular $\nabla_{p}(y, t)$ and δ-correlated random $F_{p}(y, t)$
$\left\langle F_{p}(y, t) F_{q}\left(y^{\prime}, t\right)\right\rangle=C_{p q}\left(y, y^{\prime}, t\right) \delta\left(t-t^{\prime}\right)$
Considering (4) as the Langevin equations of the problem in question and using the method developed in (ref, 2), we get the Einstein-Fokkr equation for the distribution function $W(y, t)$

$$
\begin{equation*}
\frac{\partial W}{\partial t}+\sum_{p} \frac{\partial}{\partial y_{p}}\left(A_{p} W\right)-\frac{1}{2} \sum_{p . q} \frac{\partial^{2}}{\partial y_{p} \partial y_{q}}\left(B_{p q} W\right)=0 \tag{6}
\end{equation*}
$$

with
$A_{p}(y, t)=V_{p}(y, t)+\frac{1}{2}\left[\sum_{q} \frac{\partial}{\partial y_{q}^{\prime}}, C_{p q}\left(y, y^{\prime}, t\right)\right]_{y^{\prime}=y}$
$B_{p q}(y, t)=C_{p q}(y, y, t)$
We are in need of the equations of motion for the first order moments
$\left\langle\varphi_{\alpha}\right\rangle=\int d y W \varphi_{\alpha}$
of the properly chosen random functions $\varphi_{\alpha}(y)$ of t. Let us look for the non-equilibrium solution of the equation (6) in the form
$W=W_{0}\left(1+\sum_{\alpha} \alpha_{\alpha} \varphi_{\alpha}\right)$
where $W_{0}(y)$ is the equilibrium (steady-state) solution supposed to be known and the regular functions $\alpha_{\alpha}(t)$ are to be obtained from (6). From (8) and (9) we get
$\left\langle\varphi_{\alpha}\right\rangle=\left\langle\varphi_{\alpha}\right\rangle_{0}+\sum_{\beta}\left\langle\varphi_{\alpha} \varphi_{\beta}\right\rangle_{0} \alpha_{\beta}$
where $\left\rangle_{0}\right.$ denots the equilibrium statistical averaging, that is, $\left\langle>\right.$ with W_{0}. Finally, multiplication of (6) by φ_{α}, integration with respect to y, and taking into account (10) give the linear equations of motion for $\left\langle\varphi_{\alpha}\right\rangle(t)$
$\left.\left\langle\dot{\varphi}_{\alpha}\right\rangle=-\sum_{\beta} K_{\alpha \beta}<\varphi_{\beta}\right\rangle$

Bayer problem

To illustrate the possibilities of using the method outlined in the theory of the nuclear quadrupole relaxation phenomena, let us consider the Bayer problem (ref. 4), that is, the problem of the nuclear quadrupole relaxation due to the randam rotations of each nucleus around a fixed axis (one well potential) in the case of the axial symmetry of the electric field gradient at moving nuclei, the direct internuclear interactions being neglected.

Let \vec{n} and \vec{e} be, for a nucleus considered, the unit vectors of the fixed axis mentioned and of the field gradient symmetry axis (supposed to be coinciding with the symmetry axis of the molecule containing the nucleus in question) respectively, so that the direction of \vec{n} is the equilibrium direction of $\vec{\theta} ;$ and let θ be the angle between the directions of \vec{e} and $\overrightarrow{\mathrm{n}}$. In the theory developed in (ref.4) the smallness of the amplitude of random motion $\theta(t)$ is assumed which makes it possible, firstly, to consider this motion as that of a randomly influenced torsional harmonic oscillator which is treated in (ref. 4) in the quantum way, and, secondly, to apply the conventional perturbation theory calculation of the relaxation transition probabilities. It gives the temperature dependence of the measured relaxation time $T_{1}(T)$ which proved to be very complicated; in the temperature region of practical interest

$$
\begin{equation*}
T_{D} \leqslant T<T<T_{m} \tag{12}
\end{equation*}
$$

where T_{D} and T_{m} are the Debye temperature for the torsional phonons and the orientational melting-point respectively, the simple approximate result takes place
$\left(T_{1}\right)^{-1} \sim T^{2}$
In the region $T \leqslant T_{m}$ which is certainly of interest as well (in particular, from the point of view of the study of phase transitions) the theory (ref. 4) is not valid, these temperatures being too high for the harmonic oscillator approximation could be sufficient.

To apply our method to the problem in question, we have to assume that $T \geqslant T_{D}$ as in (12); it is necessary for the classical treatment of the lattice motion would be acceptable. On the other hand, we abandon the assumption $T \ll T_{\mathbb{m}^{\prime}}$, our theory using no perturbation theory calculation; so the temperatures $T \approx T_{m}$ axe included in the consideration, too.

Let the molecule considered move in a potential field U(\vec{e}) according to the following equation of motion for the angular velo-
city $\vec{\omega}$:
$J \dot{\vec{\omega}}=-\lambda \vec{\omega}-\hat{\vec{L}} U+\vec{K}$
with
$\hat{\vec{L}} \equiv \overrightarrow{\mathrm{e}} \times \frac{\partial}{\partial \vec{e}}$
where J and λ are the moment of inertia of the molecule and the coefficient of friction respectively and \vec{K} is the δ-correlated random turning moment. The characteristic time of the regular part of the change of $\vec{D}_{\text {proporis }}$ is of the order of magnitude of $J / \lambda \ll \nu_{Q}^{-1}$ where v_{Q} is the quadrupole resonance frequency (see (ref. 4)). It means that for the time intervals of interest we may put $\dot{\bar{\omega}}=0$; then (14) gives
$\vec{\omega}=-\lambda^{-1}(\hat{\vec{L}} U-\vec{K})$
Putting (16) into the kinematical expression $\dot{\vec{e}}=\vec{\omega} \times \vec{e}$, we obtain for \vec{e} the equation of motion of the type (1)
$\dot{\vec{e}}=-\lambda^{-1}[(\hat{\vec{L}} U) \times \vec{e}]+\lambda^{-1} \vec{K} \times \vec{e}$
The Hamiltonian of the quadrupole nucleus in the molecule interacting with the inhomogeneous electric field of its surroundings may be put down as follows:

$$
\begin{equation*}
\hat{H}=\hbar \nu\left[e_{i} e_{k}-(1 / 3) \delta_{i k}\right] \hat{\mathrm{T}}_{i k} \tag{18}
\end{equation*}
$$

with
$\hat{T}_{i k} \equiv(1 / 2)\left[\hat{I}_{i} \hat{I}_{k}+\hat{I}_{k} \hat{I}_{i}-(2 / 3) \hat{I}^{2} \delta_{i k}\right]$
proportional to
where $\nu \equiv \nu_{Q}(0), \nu_{Q}(T)$ being the $N Q R$ frequency in function of temperature; here and hereafter the usual summation rule is used. The equation (17) and the Schrödinger equation (3) in the $I_{z}-r e-$ presentation, the z-axis being chosen along the direction of \vec{n}, with \hat{H} from (18) lead to the Einstein-Fokker equation (6) for $W\left(\vec{\theta}\left\{c_{n}\right\}, t\right)$ which may be written down in the following form:
$\frac{\partial W}{\partial t}+\hat{D} W=0$
with

$$
\begin{equation*}
\hat{D} \equiv(i \hbar)^{-1} \sum_{m, n}\left[\frac{\partial}{\partial C_{m}}\left(H_{m n} C_{n}\right)-\frac{\partial}{\partial C_{m}^{*}}\left(H_{m n}^{*} C_{n}^{*}\right)\right]-\tau_{B}^{-1} \hat{\vec{L}} \cdot\left[\hat{\vec{L}}+(k T)^{-1}(\hat{\vec{L}} U)\right] \tag{21}
\end{equation*}
$$

(for the orientational term in the right hand side of (21) see (ref. 5)); here $\tau_{B} \equiv \lambda / k T$ is the characteristic time of the orientational Brownian diffusion. The equilibrium solution of (20) is
$W_{0} \sim \exp (-U / k T)$
Now, we have to choose the macroscopic coordinates of the spin system and the random functions of t whose first order moments make it possible to find the macroscopic coordinates chosen. It seems reasonable to take as the macroscopic coordinates the statistically averaged populations $\left\langle P_{m}\right\rangle \equiv N_{m}$ of the $\langle\hat{H}\rangle_{0}$ eigenstates and their change rates $\dot{N}_{m} \equiv R_{m}$. Let $\hat{\boldsymbol{\rho}}$ be the state operator of the spin system. In the I_{z} - representation which we have accepted we have $\rho_{m n}=C_{m} C_{n}^{*} \quad$ (the spin system states have been supposed to be pure), $P_{m}=C_{m} C_{m}^{*}$, and
$N_{m}=\left\langle C_{m} C_{m}^{*}\right\rangle=\int d\left\{\vec{e},\left\{c_{n}\right\}\right\} W c_{m} C_{m}^{*}$
(one has to take into account that $\sum_{i} e_{i}^{2}=1$ and $\sum_{k}\left|c_{k}\right|^{2}=1$ when calculating the integral in (23)). Using the operators \hat{E}_{m} defined $\mathrm{by}\left(\hat{\mathrm{F}}_{\mathrm{m}}\right)_{\mathrm{pq}}=\boldsymbol{\delta}_{\mathrm{pm}} \delta_{q m}$ and having the properties $\left[\hat{E}_{m}, \hat{E}_{n}\right]=0$,
$\mathrm{Sp}_{\mathrm{E}} \hat{\mathrm{E}}_{\mathrm{m}} \hat{E}_{\mathrm{n}}=\mathrm{S}_{\mathrm{m}}^{\mathrm{m}}$, we obtain from (23)
$N_{m}=<\operatorname{Sp} \hat{\rho} \hat{E}_{m}>$
which gives

$$
\begin{equation*}
R_{m}=(i \hbar)^{-1}<\operatorname{Sp}[\hat{H}, \hat{\rho}] \hat{E}_{m}> \tag{25}
\end{equation*}
$$

here and herafter [,] denotes a commutator. Expressions (24) and (25) show that the random functions of t above mentioned are $\operatorname{Sp} \hat{\rho} \hat{E}_{m}$ and $(i \hbar)^{-1} \mathrm{Sp}[\hat{H}, \hat{\rho}] \hat{E}_{m} \quad$. According to our procedure, we put down the non-equilibrium solution of (20) as follows:
$w=w_{0}\left(1+\sum_{m} \alpha_{m} \operatorname{Sp} \hat{\rho} \hat{E}_{m}+\sum_{m} \beta_{m}(i \hbar)^{-1} \operatorname{Sp}[\hat{H}, \hat{\rho}] \hat{E}_{m}\right.$

The relations of the type (10) between the moments of the random functions and the parameters $\alpha_{m}(t), \beta_{m}(t)$ are

$$
\begin{align*}
& N_{m}-N_{m}^{(0)}=[2(I+1)(2 I+1)]^{-1} \alpha_{m} \tag{27}\\
& R_{m}=\left[2 \hbar^{2}(I+1)(2 I+1)\right]^{-1} \sum_{n} M_{m n} \beta_{n} \tag{28}
\end{align*}
$$

here the real symmetric matrix

$$
\begin{equation*}
M_{m n} \equiv-<\operatorname{Sp}\left[\hat{E}_{m}, \hat{H}\right]\left[\hat{E}_{n}, \hat{H}\right]>_{0} \tag{29}
\end{equation*}
$$

is used, and $N_{m}^{(0)}=\left\langle\operatorname{Sp} \hat{\rho} \hat{E}_{m}\right\rangle_{0} \quad$ are the equilibrium values of N_{m}. To get these relations, the formulae
$\left.<C_{m} C_{n}^{*}\right\rangle_{0}=(2 I+1)^{-1} \delta_{m n}$
$\left\langle C_{m} C_{n}^{*} c_{p} c_{q}^{*}\right\rangle_{0}=[2(I+1)(2 I+1)]^{-1}\left(\delta_{m n} \delta_{p q}+\delta_{m q} \delta_{n p}\right)$
have been obtained and the equality of the normalisation condition for W and for W_{0} used which gives $\sum_{m} \alpha_{m}=0$.

Finally, our scheme gives the equations of motion for the macroscopic coordinates N_{m}, $R_{\text {m }}$
$\dot{N}_{m}^{\prime}=R_{m}$
$\dot{R}_{m}=-\left[2 \hbar^{2}(I+1)(2 I+1)\right]^{-1} \sum_{n}\left(\tau^{-1} F_{m n}+\hbar^{-1} G_{m n}\right) \beta_{n}-\hbar^{-2} \sum_{n} M_{m n} N_{n}^{\prime}$
where $\mathrm{N}_{\mathrm{m}}^{\prime} \equiv \mathrm{N}_{\mathrm{m}}-\mathrm{N}_{\mathrm{m}}^{(0)}$ and the real symmetric matrix F_{mn} and real antisymmetric one $G_{m n}$ are defined in the following manner:
$F_{m n} \equiv-<\operatorname{Sp}\left(\hat{L}_{i}\left[\hat{E}_{m}, \hat{H}\right]\right)\left(\hat{L}_{i}\left[\hat{E}_{n}, \hat{H}\right]\right)>_{0}$
where $\hat{\mathbf{I}}_{\mathbf{i}}$ are the i-components of the vector operator $\overrightarrow{L_{1}}$, and
$G_{m n} \equiv-i<\operatorname{Sp}\left[\left[\hat{E}_{m}, \hat{H}\right], \hat{H}\right]\left[\hat{E}_{n}, \hat{H}\right] \gg_{0}$
In the right hand side of (33) the term with τ_{B}^{-1} is the principal one, the reason being that $M_{m n} \sim F_{m n} \sim(\hbar \nu)^{2}, G_{m n} \sim(\hbar \nu)^{3}$ and that $\tau_{B} \ll \mathcal{V}^{-1}$ which one easily verifies using the corresponding data from (ref. 4). So the characteristic time of change of R_{m} is
τ_{B} which leads to the conclusion that we may put $\dot{R}_{m}=0$ for the time intervals we are interested in considering of. After doing that and neglecting $\hbar^{-1} G_{m n}$ in comparision to $\tau_{B}^{-1} F_{m n}$, we obtain the equations of motion for N_{m} ' in the following final form:
$\dot{N}_{m}^{I}=\left[2 \hbar^{2}(I+1)(2 I+1)\right]^{-1} \sum_{n} M_{m n} \beta_{n}$
where β_{m} are to be expressed in terms of N_{m} ' by means of solving the system of the algebraic equations

$$
\begin{equation*}
\sum_{n} F_{m n} \beta_{n}=-2 \tau_{B}(I+1)(2 I+1) \sum_{n} M_{m n} N_{n}^{\prime} \tag{37}
\end{equation*}
$$

To continue our consideration in a somewhat more concrete manner, let us assume the following expression of the potential $U(\vec{e})$:
$(k T)^{-1} U=-\xi \vec{n} \cdot \vec{e}$
(one well potential) with $\boldsymbol{\xi} \equiv \mathrm{U}_{0} / \mathrm{kT} \sim \mathrm{T}_{\mathrm{m}} / \mathrm{T}$ where U_{0} is the depth of the well and T_{m} the orientational melting-point. To begin with, consider briefly the case where the angle Θ between \vec{e} and \vec{n} is small (ref. 4). As in (ref. 4), let the motion of \vec{e} take place in the plane (\vec{n}, \vec{j}), where \vec{j} is the unit vector perpendicular to \vec{n}. We have approximately
$\vec{e}=\theta \vec{j}+\left(1-\theta^{2} / 2\right) \vec{n}$
and
$\hat{H}=\hat{H}_{0}+\theta \hat{H}_{1}+\theta^{2} \hat{H}_{2}$
where \hat{H}_{0} commutes with E_{m}. It gives

$$
\begin{align*}
& \left.\left.M_{m n}=-<\theta^{2}\right\rangle_{0} \operatorname{Sp}\left[\hat{E}_{m}, \hat{H}_{1}\right]\left[\hat{E}_{n}, \hat{H}_{1}\right]-<\theta^{4}\right\rangle_{0} \operatorname{Sp}\left[\hat{E}_{m}, \hat{H}_{2}\right]\left[\hat{E}_{n}, \hat{H}_{2}\right] \\
& \left.F_{m n}=-\operatorname{Sp}\left[\hat{E}_{m}, \hat{H}_{1}\right]\left[\hat{E}_{n}, \hat{H}_{1}\right]-<\theta^{2}\right\rangle_{0} \operatorname{Sp}\left[\hat{E}_{m}, \hat{H}_{2}\right]\left[\hat{E}_{n}, \hat{H}_{2}\right] \tag{41}
\end{align*}
$$

To calculate $\left\langle\theta^{2}\right\rangle_{0}$ and $\left\langle\theta^{4}\right\rangle$, one has to accept that approximately U is proportional to θ^{2} which makes (22) become the harmonic oscilator coordinate distribution. Putting (41) into (36) and (37), we find that for some transitions the temperature dependence of the invers relaxation time is $\sim T$, and for other ones $\sim T^{2}$, which is just the case in Bayer theory (ref. 4).

Now let us turn to the potential (38) without assuming θ to be small but confine ourself to the practically interesting simple case $I=3 / 2$. We are in need of the formulae obtained in (ref. 6)

$$
\begin{align*}
&\langle\vec{e}\rangle_{0} \equiv L_{1} \vec{n} \\
&\left\langle e_{i} e_{k}\right\rangle_{0}=L_{2} n_{i} n_{k}+L_{1} \xi^{-1} \delta_{i k} \\
&\left.<e_{i} e_{k} e_{l} e_{m}\right\rangle_{0}= L_{4} n_{i} n_{k} n_{l} n_{m}+L_{3} \xi^{-1}\left(n_{i} n_{k} \delta_{l m}+n_{i} n_{l} \delta_{k m}+\right. \tag{42}\\
&\left.+n_{i} n_{m} \delta_{i l}+n_{k} n_{l} \delta_{i m}+n_{k} n_{m} \delta_{i l}+n_{l} n_{m} \delta_{i k}\right)+ \\
&+L_{2} \xi^{-2}\left(\delta_{i k} \delta_{l m}+\delta_{i l} \delta_{k m}+\delta_{i m} \delta_{k l}\right)
\end{align*}
$$

here functions $L_{n}(\xi)$ are connected with one another by the recurrent formulae

$$
\begin{equation*}
L_{n-1}-L_{n+1}=(2 n+1) \xi^{-1} L_{n} \tag{43}
\end{equation*}
$$

with

$$
\begin{equation*}
L_{0}=1, L_{1}=\operatorname{cth} \xi-\xi^{-1} \tag{44}
\end{equation*}
$$

where L_{1} is the Langevin function. Using (42), we get for arbitrary I

$$
\begin{align*}
& M_{m n}=-2\left(2 L_{3} \xi^{-1} n_{i} n_{k}+L_{2} \xi^{-2} \delta_{i k}\right) \operatorname{Sp}\left[\hat{E}_{m}, \hat{T}_{i l}\right]\left[\hat{E}_{n}, \hat{T}_{k l}\right], \\
& F_{m n}=-\left[\left(L_{2}-4 L_{3} \xi^{-1}\right) n_{i} n_{k}+\left(L_{1} \xi^{-1}-2 L_{2} \xi^{-2}\right) \delta_{i k}\right] \operatorname{Sp}\left[\hat{E}_{m}, \hat{T}_{i l}\right]\left[\hat{E}_{n}, \hat{T}_{k l}\right] \tag{45}
\end{align*}
$$

$$
\begin{align*}
& \text { where for } I=3 / 2: \\
& n_{i} n_{k} \operatorname{Sp}\left[\hat{E}_{m}, \hat{T}_{i l}\right]\left[\hat{E}_{n}, T_{k l}\right]=3\left[\begin{array}{rrrc}
-1 & 1 & & \\
1 & -1 & & \\
& & -1 & 1 \\
& & 1 & -1
\end{array}\right] \tag{46}
\end{align*}
$$

$$
\operatorname{Sp}\left[\hat{E}_{m}, \hat{T}_{i k}\right]\left[\hat{E}_{n}, \hat{T}_{i k}\right]=6\left[\begin{array}{rrrr}
-2 & 1 & 1 & \\
1 & -2 & & 1 \\
1 & & -2 & 1 \\
& 1 & 1 & -2
\end{array}\right]
$$

in (46) the indices m and n increas from right to left and from up to down, the left up corner indices being $-3 / 2,-3 / 2$.

Our results become much simpler to discuss if we replace $\mathrm{N}_{\mathrm{m}}{ }^{\prime}$ by the linear combinations $n_{\text {II }}$

$$
\begin{align*}
& n_{1} \equiv\left(N_{3 / 2}^{\prime}-N_{1 / 2}^{\prime}\right)+\left(N_{-3 / 2}^{\prime}-N_{-1 / 2}^{\prime}\right) \\
& n_{2} \equiv\left(N_{3 / 2}^{\prime}-N_{1 / 2}^{\prime}\right)-\left(N_{-3 / 2}^{\prime}-N_{-1 / 2}^{\prime}\right) \\
& n_{3} \equiv\left(N_{3 / 2}^{\prime}-N_{-3 / 2}^{\prime}\right)+\left(N_{1 / 2}^{\prime}-N_{-1 / 2}^{\prime}\right) \tag{47}\\
& n_{4} \equiv N_{3 / 2}^{\prime}+N_{1 / 2}^{\prime}+N_{-1 / 2}^{\prime}+N_{-3 / 2}^{\prime}
\end{align*}
$$

and the same for β_{m}; then (36) give

$$
\begin{equation*}
\dot{n}_{m}=-\left(\tau_{m}\right)^{-1} n_{m} \tag{48}
\end{equation*}
$$

for $m=1,2,3$ and $\dot{n}_{4}=0$ in accordance with the normalization condition. The relaxation times entering (48) are

$$
\begin{equation*}
\tau_{1} \equiv\left(96 \tau_{B} \nu^{2}\right)^{-1}\left(16+\xi^{2}\right) L_{2} /\left(\xi L_{1}-3 L_{2}\right)^{2} \tag{49}
\end{equation*}
$$

Fig. 1. The temperature dependence of the relaxation times.

$$
\begin{align*}
& \tau_{2} \equiv\left(96 \tau_{B} \nu^{2}\right)^{-1}\left(\xi^{2} L_{2}-2 \xi L_{1}+16 L_{2}\right) /\left(\xi L_{1}-4 L_{2}\right)^{2} \tag{50}\\
& \tau_{3} \equiv\left(48 \tau_{B} \nu^{2}\right)^{-1}\left(\xi L_{1}-L_{2}\right) / L_{2}^{2} \tag{51}
\end{align*}
$$

The temperature dependence of relaxation times τ_{m} is shown in Fig. 1. Using the asymptotic expressions

$$
\begin{align*}
& L_{1} \approx 1-\xi^{-1}+2 \exp (-2 \xi) \\
& L_{2} \approx 1-3\left(\xi^{-1}-\xi^{-2}\right)-6 \xi^{-1} \exp (-2 \xi) \tag{52}
\end{align*}
$$

for $\xi \geqslant 1$ and

$$
\begin{equation*}
L_{n} \rightarrow[(2 n+1)!!]^{-1} \xi^{n} \tag{53}
\end{equation*}
$$

for, $\xi \rightarrow 0$, one easily finds that inside the temperature region $T_{D} \approx T \approx T_{m}$ for the low temperatures (big $\boldsymbol{\xi}$ we have $\tau_{1} \sim \tau_{2} \sim\left(96 \tau_{B} \nu^{2}\right)^{-1} U_{0}^{2}(k T)^{-2}, \quad \tau_{3} \sim\left(48 \tau_{B} \nu^{2}\right)^{-1} U_{0}^{3}(k T)^{-3}$, and for the high temperatures (small ξ) $\tau_{1} \approx(3 / 2) \tau_{2} \sim$ $\sim \tau_{3} \sim(15 / 16)\left(\tau_{B} \nu^{2}\right)^{-1}$. This behaviour of τ_{m} is in qualitative accodance with the behaviour of the orientational relaxation times of a molecule in the potential well (38) which has been investigated in detail in (ref. 7).

The time evolution of N_{m}^{\prime} studied in experiments is characterized by different combinations of $\boldsymbol{\tau}_{\mathrm{m}}$ in different experimental situations. In the case where $\left(N_{3 / 2}^{\prime}-N_{1 / 2}^{\prime}\right)=$ $=\left(\mathrm{N}_{3 / 2}^{\prime}-\mathrm{N}_{-1 / 2}^{\prime}\right)$ which corresponds to the absence of the circularly polarized r.f.field, it is the time evolution of $n_{1}=(1 / 2)\left(N_{3 / 2}^{\prime}-N_{1 / 2}^{\prime}\right)$ which is experimentaly investigated, that is, in this case our τ_{1} is T_{1} measured (see (ref.1)). Fig. 1 shows that for the temperatures low enough our theory gives the same temperature dependence of T_{1}, as the Bayer theory (ref. 4) does, but at $T \sim T_{m} / 5$ essential discrepancy begins; as to $T \leqslant T_{m}$, the Bayer theory is not valid for these temperatures. It would be interesting to check up experimentally the prediction given by our theory concerning the $T_{1}(T)$ curve in temperature region $\mathrm{T}_{\mathrm{m}} / 5 \leqslant \mathrm{~T} \leqslant \mathrm{~T}_{\mathrm{m}}$ 。

Conclusions

In the simple (one potential well) case here considered, our theory proved to give results which couldn't be obtained by
means of conventional methods; to show it, was our aim when considering the Bayer problem. But there are cases where one well model is not sufficient, the orientational motion of a molecule going on not around one equilibrium position but between several equilibrium positions as well. In a case like that the reorientational relaxation mechanism may become essential and even predominant. Our theory is capable of treating such cases; one has to choose properly the form of U instead of (38) and the set of the macroscopic coordinates. The study of a problem of this kind is in progress.

To finish up with, a few words about the temperature dependence of $N Q R$ frequency in the case of one potential well. these frequencies are defined by the eigenvalues of $\langle\hat{H}\rangle_{0}$. Using (18) and (47), one gets easily
$\langle\hat{H}\rangle_{0}=\hbar \nu L_{2}\left[n_{i} n_{k}-(1 / 3) \delta_{i k}\right] \hat{T}_{i k}$

It follows from (54) that $V_{Q}(T)$ is given by $L_{2}(\boldsymbol{\xi})$. As it is the case for $T_{1}(T)$, the deflection of our
$\nu_{Q}(T) \quad$ from Bayer's one begins at $T \sim T_{m} / 5$.

ACRNO WILADGMENT
The authors would like to thank Dr. I.A. Kjunzel for valuable discussions.

REFERENCES

1 A. Abragam, The Principles of Nuclear Magnetism, Clarendon Press, oxford, 1961.
2 V.I. K Jazkin, V.I. Tatarskij, Usp. Fiz. Nauk, 110 (1973) 499.

3 S. Hess, L. Waldmann. Z. Naturforsch., 23a (1968) 1893.
4 H. Bayer, Zs. f. Phys., 130 (1951) 227.
5 I.D. Favro, Phys. Rev., 119 (1960) 53.
6 M.A. Martsenjuk, Uh. Eksp. Teor. Fiz., 66 (1974) 2279.
7 M.A. Martsenjuk, J.I。Rajcher, M.I. Schliomis, Zh. Eksp. Teor. Fis. 65 (1973) 834.

