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ABSTRACT

A generalization of the approach to the magnetic resonance and
relaxation problems based on the treabting of the lattice as a class-—
ical gystem with random parameters is presented. The msin point is
tsking into account the mutual influence of the spin system and the
lattice motions more completely than it conventionally used Go be
done. The method developed is applied to The problem of the nuclear
quadrupole relaxation due to the random rotations of nucleli with
I=3/2 in the case of the axially symmetric electric field gradient.
The relaxation time temperature dependence is obtained in the tem~
perature region where the Bayer theory is not valid.

INTRODUCTICN

To study the magnetic resonance and relaxation phenomena, in
particular, the nuclear quadrupole relaxation problems, different
methods of the quantum theory of non-equilibrium processes are useds
In many cases the lattice is treated as a classical system with
random parameters (random trajectory method). When realizing this
approach, one usually takes account of the fact that the spin sy~
stem motion is modulated by the random lattice motion but neglects
the backward influence of the spin system on the lattice motion.
Technically, one pubs down bthe quanbtum mechanical equabtion of mo-~
tion for the spin system with Hamiltonian containing the lattice
random parameters but uses the Einstein-Fokker equation for these
parameters only, and then one tries to use the distribution func-
tion given by this Einstein-FPokker equation to get average charac-
teristics of the spin system motion (see, for example, (ref.1).

In the paper presented a generalization of this procedure is propovsed
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aimed at the taking into account the mutual influence of the spin
system and lattice motions more completely.

The main points of the method here proposed are these: since the
Hamiltonian H(t) of the spin system contains the lattice random pa-
rameters xiﬁt), the spin system state vector components cm(t) are
the random functions, too (the spin system states are supposed to
be pure); the states of the whole
system consisting of the spin system and the lattice as sub-systems
are described statistically by means of the distribution function
W(cm, x4, t); the Schrddinger equation for c, and the classical
dynamical equations for xi,with regular and random "forces" (to get
these equations, one has to know the concrete kind of the lattice
motion in question) are to be taken as the Langevin equations of
the problem; in the way known from the theory of random processes
(see (ref. 2)), these equations lead to the Einstein-Fokker equation
for W; finally, the kinetic theory method similar to that used in
the theory of gases with inner degrees of freeedom (ref. 3) give
the equations of motion for the first order moments <L P> ()
of the random functions (o (cm, xi) of t chosen so as to mske
it possible to obtain the macroscopic coordinates of the spin sy-
stem we are interested ing; such a choice, like the choice of macro-
scopic coordinates themselves, 1s always a hypothesis. This method
makes no use of any perturbation theory technics, therefore it al-~
lows one to consider the relaxation problems in the wider tempera—
ture region than the conventional methods can do. The procedure out—-
lined is described here—-after more in detail and then applied to
the Bayer problem (ref. 4); it gives some new results concerning
the relaxation time temperature dependence which can be checked up
experimentally.

RESULTS

General approach
Let us put down the classical equations of motion for X4 in the
form

Xj = w3 + fi 1)
where V3 (x,t) and 5 (x,t) with xs{x,i} are regular and random
functions respectively. In many cases of interest fi'are 8 —cor-
related with respect to €

{T1(x8)TU(X"yt")) = cyp(x,x",t) D (t=t") 2)
(white noise hypothesis) which certainly doesn't suppose the §-cor—
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relation of X33 here and hereafter < > denotes the statistical aver—

aging. The Schrddinger equation for the spin system is

iﬁm =z“ Hnm Cn (3)
For yi{x,i, Re Cp? Im cm} it follows from (1)-(3) that
;'rp = Vp + Py )
with regular V, (y,t) and & -correlated random Fp(y,t)
<K (v,t) Fq (VitP=Cpq (v,¥,t) 3(t-t) (5)

Considering (4) as the Langevin equations of the problem in question
and using the method developed in (ref. 2), we get the Einsie-in-Fok-
ker equation for the distribution function W(y, t)

oW 9 4 02 _
RTEO- S (-0 @
with

_ 1]y o !
Ap(ut) = Vo(ut) + 3 [X.57 Coayy/ )],
Bpg (V. 1) = Coq (¥,V.1)

We are in need of the equations of motion for the first order
moments

<g>= {dyWeg, (8)

of the properly chosen random functions (@ d(y) of t. Let us look
for the non-equilibrium solution of the equation (6) in the form

(7)

where W,(y) is the equilibrium (steady-state) solution supposed
to be known and the regular functions a.d_(t) are to be obtained from
(6). From (8) and (9) we get

<@>=<P> +z§-<‘P¢‘P¢>o oq (10)

where { D, denots the equilibrium statistical averaging, that is,
£ > withW, . Finally, multiplication of (6) by 9, » integrat-

ion with respect to y , and taking into account (10) give the 1li-

nesr equations of motion for {¢.> (t)

<P > =— % Kap<Pp> 1)
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Bayer problem
To illustrate the possibilities of using the method outlined in

the theory of the nuclear quadrupole relaxation phenomena, let us
consider the Bayer problem (ref, 4), that is, the problem of the
nmuclear quadrupole relaxation due to the randam rotations of each
nucleus around a fixed axis (one well potential) in the case of the
axial symmetry of the electric field gradient at moving nuclei, the
direct internuclear interactions being neglected.

Let @ and € be, for a nucleus considered, the unit wvectors of the
fived axis mentioned and of the field gradient symmetry axis (sup-—

posed to be coinciding with the symmetry axis of the molecule con-
taining the nucleus in question) respectively, so that the direct-
ion of W is the equilibrium direction of 8; and let © be the angle
between the directions of € and B. In the theory developed in (refe4)
the smallness of the amplitude of random motion ©(t) is assumed which
mgkes it possible, firstly, to consider this motion as that of a
randomly influenced torsional harmonic oscillator which is treated
in (ref., 4) in the quantum way, and, secondly, to apply the con-
ventional perturbation theory calculation of the relaxation trans—
ition probabilities. It gives the temperature dependence of the
measured relaxation time T, (T) which proved to be very complicat-
ed; in the temperature region of practical interest

< <€ Ty (12)
where TD and T, are the Debye temperature for the torsional phonons

and the orientational melting-point respectively, the simple appro-
ximate result takes place

(r,) ~ T2 (13)

In the region T< T, which is certainly of interest as well (in
particular, from the point of view of the study of phase transitions)
the theory (ref. 4) is not valid, these temperatures being too high
for the harmonic oscillator approximation could be sufficient.

To apply our method to the problem in question, we have to assume
that TZ T, as in (12); it is necessary for the classical treatment
of the lattice motion would be acceptable. On the other hand, we
abandon the assumption T<$:Tm, our theory using no perturbation
theory calculation; so the temperatures T < T, are included in the
consideration, oo,

Let the molecule considered move in a potential field U(€) ac-
cording to the following equation of motion for the angular velo-
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city @

S - e v

Jd=—Aw~—LU+K C14)
with

-3»___ -vx__a____ 15)
L= ex3g

where d and A are the moment of inertia of the molecule and the
coefficient of friction respectively and K is the O -correlated
randon turning moment. The characteristic time of the regular part
of the change of & is of, the order of magnitude of J/A< Vo

portiona to
where Vg, 1thhe quadrupole resonance frequency (see (ref. 4)).

It means that for the time intervals of interest we may put & =0;
then (14) gives

S=—N(Lu-K) (16)

Putting (16) into the kinematical expression e=wxe s We
obtain for © the equation of motion of the type (1)

E=-A"[(CU)*8]+K'KxE (17>

The Hamiltonian of the quadrupole nucleus in the molecule inter=
acting with the inhomogeneous electric field of ibs surroundings
may be put down as follows:

H="tv[e.e,~(1/3) &y ] Tu (18)
with

A A A A A l\g

Tu=/2)[ 1L+ LIi- (2/3) P8] 1)
proportional to

where VEVQ(O) » Vg(T) beingVthe NGR frequency in function of

temperature; here and hereafter the usual summation rule is used.

The equation (17) and the Schrédinger equation (3) in the I z T~

Presentation, the z-axis being chosen along the direction of 0, with

8 from (18) lead to the Einstein-Fokker equation (6) for W(e,[cn},t)

which may be written down in the following form:

W dw=0 (20)
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with

= (] Z[ S (e Zes (G -G L[ L) ()] o0

(for the orientational term in the right hand side of (21) see
(ref. 5)); here Tp=A/kT is the characteristic time of the
orientational Brownian diffusion. The equilibrium solution of (20)
is

W, ~ exp (- U/kT) (22)

Row, we have to choose the macroscopic coordinates of the gpin
system and the random functions of t whose first order moments make
it possible to find the macroscopic coordinates chosen. It seems
reasonable to take as the macroscopic coordinates the statistically
averaged populat:.ons <Pp= Nm of the <H> eigenstates and their
change rates Np,=Rn. Let § be the state operator of the spin
system. In the I - representation which we have accepted we have

2
Pmn= CmC (the spin system states have been supposed to be
pure), P, =C,_, C y and
= % __ > *
Np=<CpnCm>=[d{€,{cn}}WecmCk (23)

(one has to take into account that 292*1 and ZIC |2'—1

when calculat:.ng the integral in (23)). Using the operators E

defined by (Em) = 3pmaqm and having the properties [Em,En]—O,
SpE E smn y we obtain from (23)

Np=< Sp_pEm> (24)
which gives

R,=(th)"'< SP[I:l,ﬁ]Em> (25)

here and herafter [ ] denotes a commutator. Expressions (24) and
(25) show that the random functions of t above mentioned are Sp_pE
and (ih) Sp[H _p] E . According to our procedure, we pub
down the non-equll:l.bra.um solution of (20) as follows:

w=W,(1+ o, SppEF T (iB) 'sp[ A, B E, (26)
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The relations of the type (10) between the moments of the random
functions and the parameters o,(t) pm(-t) are

Np—NS = [2(1+1)@I+1)] '« (27)
R = [202(A+)@T+1)] 7 M0, (28)

here the real symmetric matrix

anE—<SP[Em1H][EmH]>o (29
is used, and Nf:’=<sp ﬁ€m>o are the equilibrium values

of Nm. To get these relations, the formulae

<CmCr =(21+1)7' 8, (30)

< CuerCpCd, = [2(I+DE@IF)] (8,8t B Onp)

(31)

have been obtained and the equality of the normalisation condition
for W and for W, used which gives ; o,=0 .

Finally, our scheme gives the equations of motion for the macro-
scopic coordinates Nm’ Rm

N =R, (32)

. _ 1 ) _ -2 ’
R =—[2K(I+D@I)] 3 (T Fpt 7 Cp) o= Z M, N, (33

14
where N = Nm - NS) and the real symmetric mabtrix Fon and real anti-

symmetric one Gy 3re defined in the following manner:

anE_<Sp(al[ﬁmsﬁl)(cl[énﬂﬁ])>o (34)

A -
where I’i are the i-—components of the vector operator L, and
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A

GmnE—i'< Sp[[gm,ﬁ], li\{][En’}l“l]>¢’ (35)

In the right hand side of (33) the term w:.th Tp is the principal
one, the reason being that M, . ~('ﬁv ’ Gmn’\'('ﬁv) and
that ’EB<<V which one eas:.ly ver:.f:.es using the corresponding
data from (ref. 4). So the characteristic time of change of B is
Tg which leads to the conclusion that we may put Rm-o for the
time intervals we are interested in considering of. After doing
that and neglecting H Gpp, in comparision to Tg Fpn ’

we obtain the equations of motion for Nm' in the following fimal
form:

N = [2r(re)(e1+n)] " 3 Moo (36)

where b, are to be expressed in terms of N, ' by means of solv-
ing the system of the algebraic equations

3 Fon P =—27T (I+1)(2I+1) XM, N, (37)

To continue our consideraticon in a somewhat more concrete manner,
let us assume the following expression of the potential U (-e’) s

—

-1 -
(kT) U=—E&n-e (38)

(one well potential) with &= Uo/kT~ Tm/T where U, is
the depth of the well and T, the orientational melting-point.

To begin with, consider briefly the case where the angle 8
between & and B is small (ref. 4). As in (ref. 4), let the
motion of & take place in the plane (&, J), where j is the unit
vector perpendicular to 7. We have approximately

€=07+(1-0¥2)% (39)
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A
where H, commutes with Ej. It gives

A

Mnm=—' <92>o SP[Em:ﬁ‘!][gn:ﬁ1]*<e4>6 Sp[ém’ ﬁZ][En'QZJ

Fon == 5P [ Eqs U] [Ens ] — < 823 Sp[Ene L ][E,. ] (41

To calculate < 92>° and <84>o , one has to accept that approxi-
mately U is proportional to 0% which makes (22) become the har—
monic oscilator coordinate distribution. Putting (41) into (36) and
(37), we find that for some transitions the tempersture dependence
of the invers relaxation time is ~. T, and for other ones ~. Tz,
which is Jjust the case in Bayer theory (ref. 4).

Now let us turn to the potential (38) without assuming B to be
small but confine ourself to the practically interesting simple
case I=3%/2, We are in need of the formulae obtained in (ref. 6)

<€ =.L,n
-4
<€ieu>=Lomny+ L.§ &y
-
<éexeep> = Lininining + L3 € (ninksim'l' ninlakm'*' (42)
+ NNy Oz + NN O Ml O3 + MNmM O3l ) +

* L2 E_z(sik slm+ SilSkm+ Simakl)

here functions L,(¢) are connected with one another by the recur-—
rent formulae

Ln-‘!_Ln+1 = (2”'*‘1)5414" (43)
with

Le=1, L,=cthg—¢&" e

where L1 is the ILangevin function. Using (42), we get for arbitra-
ry I
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an=—2(2L5§—1nink+ L2£_2sil() sp [Em’ ‘T.I'i-l ] [ E“’{]\‘kl] 4

Fon=— [(L2—4L55—1)ﬂi"k + (LE-2LoE8y | SplEn, Tl B Tid] 49

where for I=3%/2:

-1 1 )
A A A 1 -1
01 SP[Epm, Tut ] [En T ]= 3 -1
1 -1
- (46)
-2 1 1 ]
A A A A —2 1
Sp[EmsTit][EnTue] = 6 2 1
_ { 1 =2

in (46) the indices m and n increas from right to left and from
up to down, the left up corner indices being -3/2, -3/2.

Our results become much simpler to discuss if we peplace Nm'
by the linear combinations n,

= (N:;/2‘ Ni’/z)*' (N5 - N:1/2)

n,= (N.,‘s/z_Ni,/z) - (N-’3/2— N:1/2)

r 4 I'4 4
Nz= (NS/z_ N-3/2)+ (N4/2— N 1/2) (47)
n,= Nzp+Ngp+ N et N5/

and the same for p", ; then (36) give

Np==(Ta) Nnm . (48)

for m=1, 2, 3 and h,=0 in accordance with the normalization
condition. The relaxation times entering (48) are

T1E(96TBV2)—1(16+§2) La/(EL,—3L2)2 (49)
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Fig. 1. The temperature dependence of the relaxation times.

Ta=(96 1, v2) " (E°L,-26L,+16L,) (6L~ 4L,)° (50)

Ty= (4815 v2) '(EL,—L,)/ L (51)

The temperature dependence of relaxation times T, is shown in
Fig. 1. Using the sasymptotiec expressions

L= 1—5—1+2exp(-2£)
L2z1_3(€"’_ 5-2)— 65-1exp (-2¢&) (52)

for §,>.,1 and
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-1 q
Ln—[(2n+1)!1] "¢ (53)

for, £+ s one easily finds that inside the temperature
region Tps T=< Ty for the low temperatures (big & )

we have Ty~ Tp~(96TpV2) 'VE(T)?, Tz~ (481xv2)™" U:(RT)“EB,
and for the high temperatures (small § ) T=(32)Ty~
~Tz~(15/16)(15v?)™" . This behaviour of T, is in
qualitative accodance with the behaviour of the orientational
relaxation times of a molecule in the potential well (38)
which has been investigated in detail in (ref. 7).

The time evolution of N,',, studied in experiments is
characterized by different combinations of T, in
different experimental situations. In the case where (N;/2~ N{ /2)"-'-:
:(N—;/; N_’_' 1 /2) which corresponds to the absence of the circularly
polarized r.f.field, it is the vime evolution of n=(1/2)(N3/,~ Nisx)
which is experimentaly investigated, that is, in this
case our T, is T, measured (see (ref.1)). Fig. 1 shows
that for the temperatures low enough our theory gives the
same temperature dependence of T,, as the Bayer theory (ref. 4)
does, but at T ~ Tm/5 essential discrepancy begins; as to
T < 'I_‘m, the Bayer theory is not valid for these temperatures.
It would be interesting to check up experimentally the prediction
given by our theory concerning the T,‘(T) curve in temperature region

/5 = T T Ty

Conclusions

In the simple (one potential well) case here considered, our
theory proved to give results which couldn't be obtained by
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means of conventional methods; to show it, was our aim when
considering the Bayer problem. But there are cases where

one well model is not sufficient, the orientational motion of
a molecule going on not around one equilibrium position but
between several equilibrium positions as well. In a case

like that the reorientational relaxation mechanism may become
essential and even predominant. Our theory is capable of
treating such cases; cone has to choose properly the form of U
instead of (38) and the set of the macroscopic coordinabes.
The study of a problem of this kind is in progress.

To finish up with, a few words about the temperature dependence
of NQR frequency in the case of one potential well. ‘'hese
frequencies are defined by the eigenvalues of <:ﬁ;> .

Using (18) and (47), one gets easily

e A
<H3="hvl, [ning- (1/3) 8y ] T (54)
It follows from (54) that Vg (T) is given by
L,( & ). As it is the case for T,(T), the deflection of our

Vo (T) from Bayer's one begins at T~ Tm/5 .
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