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A ~U~~-KI~TIC APPROACH TO THE THEORY OF NUCLEZR ~UADRUP~LE 

LOTION 

&A, ~~~ and LG. ~S~~~ 

Department of Theoretical Physics, University of Perm, Perm (U&*S.R,) 

A generalization of the approach to the magnetic resonance and 

relaxation problems based on the treating of the lattice as a class- 

ical system with random parameters is presented. The main point is 

taking into account the mutual influence of the spin system and the 

lattice motions more completely than it conventionally used to be 

done. The method developed is applied to the problem of the nuclear 

quadrupofe relaxation due to the random rotations of nuclei with 

1=3f2 in the case of the axially symmetric electric field gradient, 

The relaxation time temperature dependence is obtained in the tem- 

perature region where the Bayer theory is not valid. 

To study the magnetic resonance and relaxation phenomena, in 

particular, the nuclear quadrupole relaxation problems, different 

methods of the quip theory of eon-equilibria processes are used, 

Ih many cases the lattice is treated as a classical system with 

random parameters (random trajectory method). ahen realizing this 

approach, one usually takes account of the fact that the spin sy- 

stem motion is modulated by the random lattice motion but neglects 

the backward influence of the spin system on the lattice motion. 

!kchrricdly, one puts down the quantum Inechanic~ equation of mo- 

tion for the spin system with Hamiltonian cant aining the lattice 

random parameters but uses the Einstein-Fokker equation for these 

parameters only, and then one tries to use the distribution func- 

tion given by this EXnstein-Pokker equation to get average charae- 

teristics of the spin system motion (see, for example, (ref.?)). 

In the paper presented a generalization of this procedure is pkopbsed 
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aimed at the taking into account the mutual influence of the spin 
system end lattice motions more completely. 

The main points of the method here proposed are these: since the 

Hamiltonian H(t) of the spin system contains the lattice random pa- 

rameters xi(t), the spin system state vector components cm(t) are 

the random functions, too (the spin system states are supposed to 

be pure); the statics of the whole 

system consisting of the spin system and the lattice as sub-systems 

are described statistically by means of the distribution function 

NC,, xi) t); the S&r&Zinger equation for cm and the classical 

dynamical equations for xi with regular and random *'forces" (to get 

these equations, one has to lrnow the concrete kind of the lattice 

motion in question) are to be taken as the Langevin equations of 

the problem; in the way known from the theory of random processes 

(see (ref. 2)), these equations lead to the Einstein-Fokker equation 

for W; finally, the kinetic theory method similar to that used in 

the theory of gases with inner degrees of freeedom (ref. 3) give 

the equations of motion for the first order moments <%Xt) 

of the random functions <poL (cm, x:) of t chosen so as to make 

it possible to obtain the macroscopic coordinates of the spin sy- 

stem we are interested in; such a choice, like the choice of macro- 

scopic coordinates themselves, is always a hypothesis. This method 

makes no use of any perturbation theory technics, therefore it al- 

lows one to consider the relaxation problems in the wider tempera- 

ture region than the conventional methods can do. The procedure out- 

lined is described here/after more in detail and then applied to 

the Bayer problem (ref. 4); it gives some new results concerning 

the relaxation time temperature dependence which can be checked up 

experimentally. 

REhSUIsTS 

General approach 

Let us put down the classical equations of motion for x, in the 

form 
$1 = 

vi + *i (II 

where vi (x,t) and f+(x,t) with x~(xi) are regular and random 

functions respectively. In many cases of interest f+are 8-cor- 

related with respect to t 

(ff(x,t)fk(X’,t’ 1) = cikh.x’.t) b(t-t’) (2) 
(white noise hypothesis) which certainly doesn't suppose thea-cor- 
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relation of x.;i; here end hereafter < > denotes the statistical aver+ 

aging. The ScbrSdinger equation for the spin system is 

~+&II =I, H,, cn 

For yr(x+ Re c,, Im cm} it follows from (l)-(3) that 

0, 
= I$, + Fp 

with regular VP (g,t) and B-correlated random Fp(y,t) 

<Fp (v.t) Fq (v:f)>= C,c, (y,y’,*) %(-t-t’) 

(3) 

(4) 

(5) 

Considering (4) as the Langevin equations of the problem in question 

and using the method developed in (ref# 2), we get the EinsN-Fok- 
ker equation for the distribution function W(y, t) 

We are in need of the equations of motion for the first order 

moments 

of the properly chosen rsndom functions 

for the non-equilibrium solution of the 

(8) 

%(Y) of t. Let us look 

equation (6) in the form 

(9) 

where w,(y) is the equilibrium (steady-state) solution supposed 

to be known and the regular functions abL(f) to be obtained from 

(6). From (8) and (9) we get 

(IO) 

where < >o denots the equilibrium statistical averaging, that is, 

0 withWo . Finally, multiplication of (6) by $B~ , integrat- 

ion with respect to y , and taking into account (IO) give the li- 

nzar equations of motion for<y?>(t) 

<T&L> =-Z+,&(P~> ('11) 



Bayer problem 
To illustrate the possibilities of using the method outlined in 

the theory of the nuclear quadrupole relaxation phenomena, let us 

consider the Bayer problem (ref. 4), that is, the problem of the 

nuclear quadrupole relaxation due to the random rotations of each 

nucleus around a fixed axis (one well potential) in the case of the 

axial symmetry of the electric field gradient at moving nuclei, the 

direct internuclear interactions being neglected. 

Let?? and $ be, for a nucleus considered, the unit vectors of the 

fixed axis mentioned and of the field gradient symmetry axis (sup- 

posed to be coinciding with the symmetry axis of the molecule con- 

taining the nucleus in question) respectively, so that the direct- 

ion of g is the equilibrium direction of z; and let 8 be the angle 

between the directions of d and g. In the theory developed in (ref.4) 

the smallness of the amplitude of random motione(t) is assumed which 

makes it possible, firstly, to consider this motion as that of a 

raadomly influenced torsional harmonic oscillator which is treated 

in (ref. 4) in the quantum way, and, secondly, to apply the con- 

ventional perturbation theory calculation of the relaxation trans- 

ition probabilities. It gives the temperature dependence of the 

measured relaxation time T, (T) which proved to be very complicat- 

ed; in the temperature region of practical interest 

T,s Te T, (12) 
where TD and 'Pm are the Debye temperature for the torsional phonons 

and the orientational melting-point respectively, the simple appro- 

ximate result takes place 

-1 

CT 1 1 - T* (135) 

In the region Ts Tm which is certainly of interest as well (in 

particular, from the point of view of the study of phase transitions) 

the theory (ref. 4) is not valid, these temperatures being too high 

for .the harmonic oscillator approximation could be sufficient. 

To apply our method to the problem in question, we have to assume 

that T$TD as in (12); it is necessary for the classical treatment 

of the lattice motion would be acceptable. On the other hand, we 

abandon the assumption TczST,, our theory using no perturbation 

theory calculation; so the temperatures T 5 Tm are included in the 

consideration, too. 

Let the molecule considered move in a potential field U(g) ac- 

cording to the following equation of motion for the angular velo- 
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(14) 

where J and h are the moment of inertia of the molecule and the 

coefficient of friction respectively and gis the 8 -correlated 

random turning moment, The characteristic time of the regular part 

of the cha"ge~~~~~=~~s~~f,othe order of magnitude of J/A<<V~ 

where va isVthe quadrupole resonance frequency (see (ref. 4)). 

It means that for the time zixrtervals of interest we may put &=O; 

then (14) gives 

i;5= -??(itU-iT) 
Putting (16) into the kinemat;icsl expression $=zXg 

obtain for gthe equation of motion of the type (1) 

The Hamiltonian of the quadrupole nucleus in the molecule 

s we 

(171 

inter- 

acting wXth the inhomogeneous electric field of its surroundings 

may be put down as follows: 

with 

proportional to 
where VSWQ(~), Us(T) beir&the NC@ frequency ip funckion of 

temperature; here and hereafter the ufjual summakion rule is used. 

The equation (17) and the SchrGdiuger equation (3) in the Iz-re- 

presexxtation, the z-axis being chosen along the direction ofs, with 

g from ('IS) lead to the Einstein-Pokker equation (6) for W(Q&n),t> 

which may be written do& ia the following form: 
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(for the orientational term in the right hand side of (21) see 

(ref. 5)); here QG A/kT is the characteristic time of the 

orientational Brownian diffusion. The equilibrium solution of (20) 

is 

W,- exp (- UJkT) (22) 

NOW, we have to choose the macroscopic coordinates of the spin 

system and the random functions of t whose first order moments make 

it possible to find the macroscopic coordinates chosen. It seems 

reasonable to take as the macroscopic cotrdinates the statistically 

averaged populations < Pm>sNN, 
change rates k,rR,. Let 1 

of the <H>, eigenstates and their 

be the state operator of the spin 

system. In the I, - representation which we have accepted we have 

(the spin system states have been supposed to be 

9 arci 

rd,=<c&>= jd{~,{c,)}Wc,c: (23) 

(one has to teke into account that Tf$=1 and zjC,l"=l 

when calculating the integral in (23)). Using the operators srn 

def+edPy ($&=$mbqm 

SPE,E,,=~~~ 

and having the properties[~,,&]=O, 

* we obtain from (23) 

Nm =<sp&> (24) 

which gives 

R,= (25) 

here 

(25) 

and herafter [, ] denotes a commutator. mressions (24) and 
1 

she_7 that :heArandom functions of t above mentioned are Sp& 

=d (ik) sp[H,p] E, . According to our procedure, we put 
down the non-equilibrfum SOlUtia of (20) as follows; 

(26) 



The relations of the type (IO) between the moments 

functions and the parameters or,(t) , p,,,(t) =e 

N,-NE'= [2(r+1)(2r+i)]-‘tim 

R,= [2fi2(I+~)(21+l)]-‘tM,,p, 
n 

here the real eyn?triC matrix 

M mn 
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of the random 

(27) 

(28) 

(29) 

is used, and NE’= < Spij Em>, are the equilibrium values 

of Nm. To get these relations, the formulae 

<C&> =(2I+f)--9,” (30) 

< c,c,“c,c,“>, = [2(I+?)(2r+~)]-‘(6,,6pS+ s,,s,,) (31) 

have been obtained and the equality of the normalisation condition 

for W and for W, used which gives zd~,=O . 
Finally, our scheme gives the equations of motion for the macro- 

scopic coordinates Nm, I& 

r;;= R, (32) 

(33) 

where NLal& - Nz'and the real symmetric matrix Fmn and real anti- 
symmetric one Gm exe defined in the following manner: 

where & are the i-components of the vector operator z, and 
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G mn s-i< s&, ii], ;I][ i,, ii] >. (35) 

In the right hand side of (33) the term with TG is the principal 

one, the reason being that M,,- F,,-((hi)*, G,,-(li~)~ and 

that rCBGY-' which one easily verifies using the corresponding 

data from (ref. 41, So the characteristic time of change of Em is 

r0 which leads to the conclusion that we may put &O for the 

time iatervals we are interested in considering of. After doing 

that and neglecting A-"G,, in comparision to TUFT,, , 

we obtain the equations of motion for I&' in the following final 

form: 

h;=[2h2(I+7)(21+l)]-'EM,,/& 
tl 

(36) 

where Pm are to be expressed in terms of H,' by means of sOlv- 

ing the system of the algebraic equations 

;L&= -2~~(1+1)(21+1)~M,,N,r n 

To continue our consideration in a somewhat more concrete manner, 

let us assume the following expression of the potential U(Q) : 

(kT)'U =- $ iiz 

(one well potentiti) with E=W,/kT-- T,/T 
the depth of the well and T,,, the orientational 

where U. is 

melting-point. 

To begin with, consider briefly the case where the angle 8 

between g and g is small (ref. 4). As in (ref. 41, let the 

motion of Q take place in the plane (z, 3). where yis the unit 

vector perpendicular to 2. We have approximately 

(37) 

(38) 

(391 

and 
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where 2 o commutes with Em. It gives 

M mn 

To calculate <8*>, and <B4>, , one has to accept that approxi- 

mately U is proportional to 0* which makes (22) become t;he har- 

monic oscilator coordktate distribution. Putting (41) into (36) and 

(371, we find that for some transitions the temperature dependence 

of the avers relaxation time is r~, T, and for other ones cr-lT 2 S 

which is just the case in Bayer theory (ref, 4). 

Row let us turn to the potential {38) without assuming 8 to be 

small but confine ourself to the practically interesting simple 

case I=3/2. We are in need of the formulae obtained in (ref. 6) 

here functions t,(e) are connected wi;t;h one another by the recur- 

rent formulae 

L n-t - L*I = (2n+l)gL, 

with 

(43) 

where Lq is the Lang;evin fQ.nctiort- Using (421, IRK get for arbitra- 

rgI 
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M fnn 

F =- mn [(L,-4L,~-')nint+(L,~~2L~~2)sik]SP[~~,~~~][~",~~~J C45) 

where for 1=3/2: 

in (46) the indices m and n increas from right to left and from 

up to down, the left up corner indices being -s/2, -312. 

Our results become much simpler to discuss if we Peplace Nm' 

by the linear combinations pm 

n2= (N&-N:,s) - (N:,/,- N:,,p) 

(47) 

and the same for P m ; then (36) give 

-1 
iim=-(T,) n, (4-8) 

for nkl, 2,3and ri,=O in accordance with the normalization 

condition. The relaxation times entering (48) aze 

(49) 
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Fig. 1, !l?he temperature dependence of the relaxation times. 

r2= (96q,v2)-‘(E2L,-2eL,+16L2)/($L,-4L2)2 (50) 

43- (48 ‘tev2)-‘(EL,- la,)/&; 

The temperature dependence of relaxation 

Fig. 'I. Using the asymptotic expressions 

L,= 1++2exp(-20) 

~p1-3(5-‘-e-‘)- 6 <-‘exp(-25) 

times Tm is shown in 

(52) 
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L,- [(2n+l)!!]-l~n 
(531 

for, &4 one easily finds that inside the temperature 

region &a Tzz T,' for the low temperatures (big 4 ) 
we have T+-'zT~+ (96’tg~2~-‘lJ~(kT)-“, T3* (+3q#)-” U:(kT)-3, 
and for the high temperatures (small 4 

-~~~(15~~~~(~~~*~-~ 
) It2 =(3/2)"t2 - 

. This behaviour of II, is in 

qualitative accodance with r;he behavlour of the orientational 

rels.xat;ion times of a molecule in the potential well (58) 

which has been investigated iu detail in (ref. 7). 

The time evolution of Nk studied in experiments is 

characterized by different combinations of 'Cm in 

different experimental situations. In the case where (N&-N:/&= 

= W&- N_',AJ which corresponds to the absence of the circularly 

polarized r.f.field, it is the time evolution of r1,=(1/2)(N;13--Nr/~) 
which is experimeatalg investigated, that is, in this 

case our T9 is 5 measured (see (ref.1)). Fig. 'I shows 

that for the temperatures low enough our theory gives the 

same temperature dependence of T4, as the Bayer theory (ref. 4) 

does, but at T- Tm/s essential discrepancy begins; as to 

T =S "cm* the Bayer theory is not valid for these temperatures, 

It would be interesting to check up experimentally the yrediction 

given by our theory concerning the T,(T) curve in temperature region 

Tmf5 S T 5 !I&* 

Conclusions 

In the simple (one potential well) case here considered, our 

theory proved to gXve results which couldn't be obtained by 
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means of conventional methods; to show it, was our aim when 

considering the Bayer problem. But there are cases where 

cane well_ model is not sufficient, the orientation&l. motion of 
a molecule going on not around one equilibrium position but 

between several equilibrium positions as well. In a c&se 
like that the reorientation&. relaxation mechanism may become 

essential and even predominant. Our theory is capable of 

treating such cases; one has to choose properly the form of U 
instead of (38) and the set of the macroscopic coordinates. 
The study of a problem of this kind is in progressr 

To finish up with, a few words about the temperature derjendence 
of NQR frequency in the case of one potential well. These 
frequencies are defined by the eigenvelues of <ii>, _ 
Using (Its) and (47), one gets easily 

It follows from (54) that %2(T) is given by 

I$ 5 >. As it is the case for T,(T), the deflection of our 

%x0 
from Bayer's one begins at T- &l/5 . 
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