NQR Investigation of the Influence of Intramolecular Interaction Geometry on CCl₃ Group Dynamics

I. A. KJUNTSEL, V. A. MOKEEVA, G. B. SOIFER, AND I. G. SHAPOSHNIKOV

Perm University, Perm, U.S.S.R.

PRESENTED AT THE FOURTH INTERNATIONAL SYMPOSIUM ON NUCLEAR QUADRUPOLE RESONANCE, OSAKA, JAPAN, SEPTEMBER 1977

The CCl₃ group mobility in crystals of $(CCl_3)_m PR_{5-m}$ and $(CCl_3)_m Cl_{3-m} P = NR'$, m = 1, 2, is studied by NQR methods, using temperature dependence measurements of both the resonance frequencies and the spin-lattice relaxation times for ³⁵Cl nuclei. There are differences between the CCl₃ group motions in these crystals due to differences in steric interactions. In the first case the reorientation motions of the axial trichloromethyl groups are strongly hindered. In the second, reorientations take place, with the motions of the two CCl₃ groups which are bonded to the same phosphorus atom different as a result of differences in the potential barriers associated with the nonequivalent CCl₃ groups in the molecule.

 CCl_3 group mobility in different compounds is essentially dependent on the character of the CCl_3 group interaction with the nearest molecular fragments which are bonded to the same atom of the molecule in question, and it may be studied by means of NQR spectroscopy. It is known that the reorientation motions of the CCl_3 group when bonded to a tetrahedral carbon atom are strongly hindered. For example, in the case of hexachloroethane crystals the potential barrier values corresponding to the motions of molecules as a whole are less than those corresponding to the CCl_3 group reorientations (1); this is also true in $Cl_3CCCl_2N=PCl_3$ crystals (2). On the other hand, the CCl_3 groups are much more free when bonded to tricoordinated carbon atoms in compounds containing double bonds or in trichloromethyl benzenes (for example, see (3, 4)).

In this paper, the CCl_3 group mobility with respect to the P–C bond in some crystals in which the phosphorus atom is penta- or tetracoordinated (5) is studied by means of experimental investigations of the temperature dependence of NQR parameters on ³⁵Cl nuclei.

The following two types of crystals have been investigated: phosphoranes $(CCl_3)_m PR_{5-m}$, and phosphazo compounds $(CCl_3)_m Cl_{3-m} P = NR'$ with m = 1, 2. The NQR pulse method described in (6) has been used. The chlorine signals have been examined in the CCl₃, R, and R' groups. The temperature-dependence measurements of both the NQR frequencies and the spin-lattice relaxation times have been performed to improve the measurement accuracy and the experimental data interpretation (see (7)). Some results which have been obtained previously (6, 8), are utilized in this report.

KJUNTSEL ET AL.

Table 1 gives data for the first class of compound investigated, namely, for phosphoranes and for cyclodiphosphazane (compound VI), which can be considered as a "double phosphorane." In these molecules the phosphorus atom is trigonal bipyramidal and the CCl₃ groups occupy the axial positions (8). The CCl₃ group chlorine atoms are staggered with respect to the equatorial bonds, and hence it is natural to expect the mobility of these groups to be hindered, and in fact, the character of the temperature dependence of the ³⁵Cl NQR frequencies ν and spin-lattice relaxation times T_1 shows this to be the case. For example, let us consider Figs. 1 and 2, which show the results of the $\nu(T)$ and $T_1(T)$ measurements, respectively,

TABLE 1	Т	ABLE	1
---------	---	------	---

No.	Compounds	Melting point tempera- ture (K)	Molecular fragments	Resonance frequencies ^a at 77 K (MHz)	<i>T</i> ₁ at 77 K (msec)
I	CCl ₃ PCl ₄	398°	CCl ₃ PCl ₃ (equator.) PCl (axial)	39.689 (3) 31.952 (3) 28.250 (1)	216 307 575
п	(CCl ₃) ₂ PCl ₃	443°	$CCl_3 (A)^d$ $CCl_3 (B)$ $PCl_3 (equator.)$	39.609 (3) 39.749 (3) 29.458 (3)	719 430 1040
III	(CCl ₃) ₂ Cl ₂ PNCO	360	CCl_3 (A and B) ^d	39.473 (4) 38.948 (2) 29 430 (2)	261 260 274
IV	(CCl ₃) ₂ Cl ₂ PNH ₂	418 ^b	CCl_3 (A and B) ⁴	39.134 (4) 39.081 (2) 28 290 (2)	2
v	(CCl₃)₂Cl₂PN=PCl₃	442	CCl ₃ (A and B) ⁴	39.258 39.042 38.955 38.528 38.439 38.220	240 263 276 193 284 203
			PCl ₂ (equator.)	28.918	422 396
			PCl₃	30.243 30.144 30.113	202
VI	(CCl ₃ Cl ₂ PNCH ₃) ₂	448	CCl ₃	40.018 39.249 39.112	290 163 156
			PCl ₂ (equator.)	28.430 27.950	185 329

THE ³⁵CI NQR SPECTRAL AND RELAXATION PARAMETERS FOR PENTACOORDINATED PHOSPHORUS COMPOUNDS

^a The signal relative intensities are given in parentheses.

^b The substance decomposes when it melts.

^c The temperature at the beginning of decomposition.

^d A and B denote different CCl₃ groups in the molecule.

FIG. 1. Temperature dependence of the ³⁵Cl NQR frequencies in $(CCl_3)_2PCl_3$ (6): \bigcirc , CCl_3 (A); \bigoplus , CCl_3 (B); \square , PCl_3 (equatorial).

FIG. 2. Temperature dependence of the 35 Cl NQR spin-lattice relaxation time in (CCl₃)₂PCl₃ (6) (the same marking as in Fig. 1).

for $(CCl_3)_2PCl_3$. The NQR signals from all the chlorine nuclei in this molecule are observable right up to the decomposition temperature with no singularities, and $T_1(T)$ to a good approximation has the form T^{-n} with *n* equal to 2.2 for CCl₃ (A), 2.1 for CCl₃ (B), and 2.1 for PCl₃ (equatorial). These facts are proof of the absence of separate reorientations of the CCl₃ groups in this compound. For the chlorine nuclei of the other compounds listed in Table 1 and with two CCl₃ groups, the T^{-n} law with *n* close to 2 also holds; the only exception is the PCl₃ group in compound V which gives no observable NQR signal at room temperature, thereby revealing the existence of separate reorientations of this group (compare (7)).

Table 2 contains data for the second class of compound investigated, that is, for trichloromethyl derivatives of phosphazo compounds in which one or two CCl_3 groups are bonded to a tetracoordinated phosphorus atom. The C-P-X bond angle in these is greater than the angle between the axial and equatorial bonds for the pentacoordinated phosphorus derivatives, so the CCl_3 groups may be expected to be more free. At the same time, additional hindrances are possible in compounds in which there are two CCl_3 groups. It may be concluded, from the character of

FIG. 3. Temperature dependence of the ${}^{35}Cl$ NQR frequencies in $(CCl_3)_2ClP=NSO_2Cl:$ 1, CCl_3 (A); 2, CCl_3 (B); 3, PCl; 4, SO_2Cl .

FIG. 4. Temperature dependence of the ${}^{35}Cl$ NQR spin-lattice relaxation time in (CCl₃)₂ClP=NSO₂Cl (the same line marking as in Fig. 3).

the experimental curves for $\nu(T)$ and $T_1(T)$, that in the molecules considered containing two CCl₃ groups the dynamics of these groups is of the same type. Consider, for example, compound I in Table 2. The experimental curves mentioned are shown in Figs. 3 and 4, respectively. The NQR signals from the chlorine nuclei of the two CCl₃ groups in question fade out at different temperatures, and in each case much earlier than the temperature at which melting begins. To a good approximation, $T_1^{-1}(T)$ has the form $a \cdot T^n + b \cdot \exp(-V_0/RT)$, in which the potential barrier V_0 has the values listed in Table 2 and the parameters a, n, b (T_1 is measured in seconds) have the values

For different chlorine nuclei of each of the atomic groups considered, the $T_1(T)$ curves coalesce at high temperatures. All these facts show that the CCl₃ groups undergo autonomous reorientations with different potential barrier values V_0 . This

7	
BLE	
TA	

THE ³⁵CI NQR SPECTRAL AND RELAXATION PARAMETERS FOR TETRACOORDINATED PHOSPHORUS COMPOUNDS

		Melting					1
		point tem- perature		Resonance frequencies ^a	<i>T</i> ₁ at 77 K	Fadeout temperature	Reorientation notential harrier
No.	Compound	(K)	Molecular fragments	at 77 K (MHz)	(msec)	(K)	(kcal/mole)
(1)	(2)	(3)	(4)	(2)	9	6	(8)
	(CCl ₃) ₂ ClP=NSO ₂ Cl	347	CCI₃ (A) ^b	41.594	19	205	8.1 ± 0.5
				41.141	35		2¢
				40.324	22		
			CCI ₃ (B) ^b	41.706	84	255	11.1 ± 0.2
				40.800	50		
				40.376	67		
			PCI	29.835	105	325	11.1 ± 0.3
			SO ₂ CI	32.620	10	235	1
П	(CCl ₃) ₂ ClP=NSOCl	353	CCl ₃ (A) ^b	41.792	84	215	8 ± 1
				40.772	78		l
				40.430	64		·
			CCI ₃ (B) ^b	41.874	166	265	11 ± 1
				40.672	121		
				40.554	134		
			PCI	29.056	440	338	12 ± 1
			SOCI	26.110	123		1
III	(CCl ₃) ₂ CIP=NPOCl ₂	331	CCI ₃ (A) ^b	41.410	l	225	7.9 ± 0.4
				40.448	23		
				40.299	21		
			CCI ₈ (B) ^b	41.410		250	9.2 ± 0.2
				41.160	112		I
				40.712	98		
			PCI	28.745	145	331	9.4 ± 0.3
			POCI	27.432	176	265	12.0 ± 0.4
				27.282	166		l

408

KJUNTSEL ET AL.

$V = CC_3C_3 P_{12}^{-1} C(1) = \frac{40.534}{10.323} (2) = \frac{40.534}{10.333} (2) = \frac{40.534}{10.333} (2) = \frac{40.534}{10.333} (2) = \frac{40.536}{10.333} (2) = \frac{40.516}{10.333} (2)$	IV	(CCl ₃) ₂ CIP=NSiCl ₃	318	CCl ₃ (A and B) [€]	40.847 (1)	68	< 293
$V = CC_3C_2P=NC_6H_4P-CI = 311 = CC_3 (C \text{ and } D)^4 = \frac{40.334}{10.333} (2) = \frac{40.378}{10.333} (2) = \frac{40.378}{10.333} (2) = \frac{40.378}{10.333} (2) = \frac{40.334}{10.333} (2) = \frac{40.334}{10.334} ($					40.758 (1)	56 5	
$V = CC_3 C C_3 P = N C_4 I_4 P - C I = 311 = C C I_3 (C and D)^4 = 10.511 = 165 = 10.513 = 10.513 = 10.172 = 10.513 = 10.172 = 10.513 = $					40.JJ4 (2)		
$V = CCI_{6}CI_{3}P=NC_{6}H_{4}P-CI = 311 = CCI_{6} (C \text{ and } D)^{d} = \frac{15.51}{10.551} = \frac{15.51}{10.55} = \frac{15.51}{$					10.225	33	
$V = CC_3 CL_3 P = NC_3 H_4 P - Cl = 311 = CCl_3 (C and D)^4 = 40.666 (1) = 44 = -293 = 19.511 = 105 = 19.172 = 195 = 19.512 = 1$					C007	707	
$V = CCl_3Cl_3P=NC_6H_4p-Cl = 311 = CCl_3 (C and D)^4 = 40.686 (1) = 44 = <293 = 9.172 = 195 = 195 = 195 = 195 = 195 = 195 = 195 = 195 = 195 = 195 = 195 = 195 = 105 = $				SiCl ₃	19.511	165	
$V = CCl_{3}Cl_{2}P=NC_{6}H_{4}P-Cl = 311 = CCl_{3} (C \text{ and } D)^{d} = 40.686 (1) = 44 = -233 = -$					19.395	195	
$V = CCl_3Cl_2P=NC_6H_4P-Cl = 311 = CCl_3 (C \text{ and } D)^4 = 40.686 (1) = 44 = -573 (2) = 54 = -573 (2) = 39 = -575 (2) = 39 = -575 (2) = 39 = -575 (2) = 39 = -575 (2) = 39 = -575 (2) = $					19.172	195	
$VI CC_3CI_3P=NC(CH_3)_3 \\ CC_3CI_3P=NC(CH_3)_3 \\ CC_3CI_3P=NC(CH_3)_3 \\ CC_3CI_3P=NC(CH_3)_3 \\ CC_3CI_3P=NC(CH_3)_3 \\ CC_3CI_3P=NC(CH_3)_3 \\ CCI_3CI_3P=NC(CH_3)_3 \\ CCI_3$	>	CCl _a Cl ₂ P=NC ₆ H ₄ p-Cl	311	CCl_3 (C and D) ^d	40.686 (1)	4	< 293
VI CCl ₃ Cl ₄ P=NC(CH ₃) ~ 225 CCl ₃ (C and D) ⁴ 27730 (0) 46 40.136 (1) 46 40.136 (1) 46 27730 (1) 46 277.368 95 27.368 95 27.368 95 27.388 (1) 277.388 (1) 277.288 (1) 277.288 (1) 277.288 (1) 277.288 (1) 277.288 (1) 277.288 (1) 277.288 (1) 277.286 (1) 277.265 (2) 40.474 (2) 64 40.474 (2) 64 40.474 (2) 64 40.334 (1) 24 20.10^4 27.055 (2) 40.661 (2) 49 40.061 (2) 40 40.061 (2) 40 (3) 40 40.061 (2) 40 (4) 40 40.061 (2) 40		* 1			40.578 (2)	54	
$\label{eq:relation} \begin{tabular}{c c c c c c c c c c c c c c c c c c c $					40.510 (2)	39	
$\label{eq:relation} PCI_a \ (C \ and \ D)^d \qquad 27.730 \qquad 101 \\ 27.664 \qquad 101 \\ 27.564 \qquad 101 \\ 27.368 \qquad 95 \\ 27.368 \qquad 95 \\ 27.368 \qquad 101 \\ 27.288 \qquad 101 \\ 40.474 \ (Z) \qquad 64 \\ 40.474 \ (Z) \qquad 64 \\ 40.474 \ (Z) \qquad 64 \\ 40.534 \ (I) \qquad 22 \\ CCI_a \ (D)^d \qquad 40.534 \ (I) \qquad 24 \\ 40.661 \ (Z) \qquad 40 \\ 61 \\ 0061 \ (Z) \qquad 40 \\ 61 \\ 61 \\ 0061 \ (Z) \qquad 64 \\ 40.061 \ (Z) \qquad 40 \\ 61 \\ 61 \\ 61 \\ 61 \\ 61 \\ 61 \\ 61 \\ 6$					40.136 (1)	46	
VI CCI ₃ CI ₄ P=NC(CH ₃) ₃ ~ 225 CCI ₃ (C) ^d 27.366 101 27.368 95 27.368 95 27.368 101 27.368 101 27.268 101 27.268 101 142 143 142 143				PCl ₂ (C and D) ^d	27.730	101	
VI CCl ₃ Cl ₄ P=NC(CH ₃) ₃ ~ 225 CCl ₃ (C and D) ^d 35.183 101 $(C \text{ and D})^d$ 34.453 142 $(C \text{ and D})^d$ 34.453 142 PCl_3 (C) ^d 40.586 (1) 82 PCl_3 (C) ^d 27.265 222 CCl ₃ (D) ^d 40.514 (1) 24 PCl_4 (D) ^d 40.061 (2) 49 PCl_4 (D) ^d 27.075 63					27.664	101	
VI CCl ₃ Cl ₄ P=NC(CH ₃) ₃ ~ 27.288 101 (C and D) ⁴ 35.183 153 (C and D) ⁴ 34.453 142 (C and D) ⁴ 34.453 142 PCl ₃ (C) ⁴ 40.586 (1) 82 PCl ₃ (C) ⁴ 40.586 (1) 82 CCl ₃ (D) ⁴ 40.5125 222 CCl ₃ (D) ⁴ 40.512 180 PCL ₆ (D) ⁴ 40.051 (2) 49 PCL ₆ (D) ⁴ 77.075 63					27.368	95	
VI CCl ₃ Cl ₄ P=Cl 35.183 153 (C and D) ^d 34.453 142 (C and D) ^d 34.453 142 PCl ₃ (C) ^d 40.586 (1) 82 PCl ₃ (C) ^d 40.474 (2) 64 PCl ₃ (C) ^d 27.265 222 CCl ₃ (D) ^d 40.334 (1) 24 PCL ₆ (D) ^d 40.061 (2) 49 PCL ₆ (D) ^d 27.075 63					27.288	101	
VI CCl ₃ Cl ₂ P=NC(CH ₃) ₃ ~ 225 CCl ₃ (C) ^d 34.453 142 PCl ₃ (C) ^d 34.453 142 PCl ₃ (C) ^d 40.586 (1) 82 PCl ₃ (C) ^d 27.265 222 CCl ₃ (D) ^d 40.314 (1) 24 PCL ₅ (D) ^d 40.061 (2) 49 PCL ₅ (D) ^d 27.075 63				C ₆ H ₄ <i>p</i> -Cl	35.183	153	
VI $CCl_{a}Cl_{a}P=NC(CH_{a})_{a}$ ~225 $CCl_{a}(C)^{d}$ 40.586 (1) 82 PCl_{a} (2)^{d} 27.265 222 PCl_{a} (2)^{d} 27.265 222 CCl_{a} (D)^{d} 40.334 (1) 24 PCL_{a} (D)^{d} 40.061 (2) 49 PCL_{a} (D)^{d} 77.075 63				(C and D) ^d	34.453	142	
$PCI_{a} (C)^{d} = 27.265 = 222$ $CCI_{a} (D)^{d} = 40.334 (1) = 24$ $PCI_{a} (D)^{d} = 40.061 (2) = 49$	VI	CCl ₃ Cl ₂ P=NC(CH ₃) ₃	~ 225	CCI ₃ (C) ⁴	40.586 (1)	82	
$PCI_{a} (C)^{d} = 27.265 = 222$ $CCI_{a} (D)^{d} = 40.334 (1) = 24$ $PCI_{a} (D)^{d} = 70.061 (2) = 49$					40.474 (2)	2	
$CCI_{3} (D)^{d} = 26.745 = 180$ $CCI_{3} (D)^{d} = 40.334 (1) = 24$ $40.061 (2) = 49$ $PCI_{2} (D)^{d} = 27.075 = 63$				PCI_{a} (C) ⁴	27.265	222	
$CCI_{3} (D)^{d} = 40.334 (1) 24 \\ 40.061 (2) 49 \\ PCI_{2} (D)^{d} = 27.075 63$					26.745	180	
$PCI_{c}(D)^{d}$ 27.075 63				CCI₃ (D) ⁴	40.334 (1)	24	
PCI ₂ (II) ⁴ 27 075 63					40.061 (2)	49	
				$PCl_2 (D)^d$	27.075	63	
26.630 45					26.630	45	

^b A and B denote nonequivalent CCl₃ groups in the molecule. • At 77 K in the CCl₃ spectrum range two additional less intensive lines are observable at the frequencies 40.698 and 40.470 MHz. • C and D denote nonequivalent positions of the molecules in the crystal unit cell.

409

KJUNTSEL ET AL.

difference (and the corresponding difference between the reorientations of two CCl₃ groups of the same molecule) is believed to be due to the different characters of interaction of the two CCl₃ groups with the chlorine atom in the P-Cl residue. The $T_1(T)$ curves for the P-Cl chlorine atom and for the more hindered of the two CCl₃ groups prove to be similar; in particular, the corresponding potential barrier values are essentially the same. This similarity leads us to believe that the more hindered CCl₃ group is situated closer to the P-Cl chlorine atom than the other group, and the relaxation mechanism for this chlorine atom is the modulation effect due to the motion of the CCl₃ group mentioned. If this is true than the $T_1(T)$ curve for the chlorine atom in question has to possess a minimum. It is plausible to assume that the sample melting made it impossible to observe this minimum.

As to the compounds in Table 2 which contain only one CCl_3 group, similar arguments lead to the conclusion that separate reorientations of these groups exist, but the corresponding potential barrier values could not be measured because of the complexity of the spectrum and low signal-to-noise ratio.

Summing up the results obtained, we can make the following statements. In the pentacoordinated phosphorus compounds that were investigated, intramolecular steric hindrances exist and prevent autonomous reorientations of axially bonded CCl_3 groups; the higher mobility of these groups usually observed (in comparison with the other molecular fragments) is due to the more active librational motions (6). In the tetracoordinated phosphorus compounds, CCl_3 group autonomous reorientations occur, even if two such groups are bonded to the same phosphorus atom; in the last case, the two CCl_3 groups are dynamically distinguishable.

ACKNOWLEDGMENT

The authors would like to thank Dr. E. S. Kozlov for supplying the substances investigated and for fruitful discussions.

REFERENCES

- 1. I. TATSUZAKI AND Y. YOKOZAWA, J. Phys. Soc. Japan 12, 802 (1957).
- 2. V. A. MOKEEVA, I. A. KJUNTSEL, AND G. B. SOIFER, Z. Fiz. Khim. 49, 1020 (1975).
- 3. V. A. MOKEEVA, I. V. IZMESTIEV, I. A. KJUNTSEL, AND G. B. SOIFER, *Fiz. Tverd. Tela* 16, 3649 (1974); Col. "Radiospektroskopia," No. 10, p. 44, Perm University, Perm, 1976.
- 4. T. KIICHI, N. NAKAMURA, AND H. CHIHARA, J. Magn. Reson. 6, 516 (1972); M. HASHIMOTO, Anal. Instrum. 13, 160 (1975).
- 5. R. J. GILLESPIE, "Molecular Geometry," Van Nostrand Reinhold, London, 1972.
- 6. V. A. MOKEEVA, I. V. IZMESTIEV, I. A. KJUNTSEL, AND G. B. SOIFER, Fiz. Tverd. Tela 16, 1714 (1974).
- V. A. MOKEEVA, I. A. KJUNTSEL, AND G. B. SOIFER, Col. "Fiz. metodi issledovania tverdogo tela," p. 64, Ural Politechnic Institute, Sverdlovsk, 1975; I. A. KJUNTSEL, V. A. MOKEEVA, G. B. SOIFER, AND I. G. SHAPOSHNIKOV, J. Magn. Reson. 20, 394 (1975).
- 8. E. S. KOZLOV, S. N. GAIDAMAKA, I. A. KJUNTSEL, V. A. MOKEEVA, AND G. B. SOIFER, Z. Obsch. Khim. 47, 1013 (1977).