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Clustering of Magnetic Ions in Diluted Solid Paramagnets
By
E. K. HENNER (b) and I. G. SHAPOSHNIKOV (a)

A method for studying the magnetic ion cluster forming in magnetically diluted solid para-
magnets is proposed based on experimental data on the concentration dependence of the EPR line
form and width. As a concrete example, the distribution of the Mn?+ jons in the Mn2*: MgO solid
solution is considered. Some questions of the EPR concentration dependence in the case of the
homogeneous random distribution of the magnetic ions is discussed, too.

IIpensiosxed MeTO[ M3Yy4YeHHUA KJIacTepU3anMH MATHHUTHBIX MOHOB B MArHUTOpAa3Beq&HHBIX
TBEPALIX IapaMarHeTHKax, 0OasupywiuuiicA HAa HUCMOJb30BAHUM JKCIEPUMEHTAIbHBIX
AaHHBIX [0 KOHIIEeHTPANMOHHOM’ 3aBUcHMOCTH (opmbl 1 mypunsl nuann 3I1P, B kadecTBe
IpuMepa paccMOTPeHO paclpefejienne HoHOB Mn2?* B TBepmoM pactBope Mn?*: MgO.
O0cy:xaaTCA TaKke HeKOTOpbie BOIIPOCHl KOHIIEHTPALMOIIHOI 3aBucumocTi 1P B coy-
4yae OJHOPOAHOIO CIIy4aifHOIrO paclipejleleHMA MAarHUTHBIX HOHOB.

1. Intreduction

There are many domains of scientific and technical research (see, for example, [1])
where it is necessary to know the magnetic ion distribution in the crystal lattice of
a magnetically diluted erystal (solid solution). For transition ions in diamagnetie erys-
tal such an information may be obtained by means of the concentration dependence
study of the electron paramagnetic resonance (EPR). In the first paper [2] on the theory
of the concentration dependence of the EPR line shape and width the supposition of
a random distribution of magnetic ions has been accepted, i.e. for each site the occupa-
tion probability has been considered as equal to the concentration of magnetic ions
C = N;/N, where N, is the number of magnetic ions and N, the number of accessible
sites. The same supposition has been used in the following papers [3 to 5]. However,
some authors have mentioned the discrepancy between experimental concentration
dependence data and theoretical results based on the random distribution supposition
— for example, NiO-MgO (see [6] and references therein), in Mn?*:CdTe [7], in
Cr3+:AL,O, [8], and so on. In the paper presented a method of approximate statistical
description of the magnetic ion distribution using some EPR, experimental data is pro-
posed and an example of its application is considered. A kind of inversion of the method
is discussed, too.

2. Method

To treat the problem in question, the method of moments may be used. Let us consider
the case in which the form of the line shape function and its width are due only to the
dipolar and exchange interactions. Bearing in mind symmetric lines, let us use the
second and the fourth moments. For a powder sample the following expressions have
been obtained [9]:
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for weak exchange I < gfH (adiabatic case [10]) and

10
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for strong exchange I >>gfH (nonadiabatic case [10]). Here N is the number of mag-
netic ions, I the isotropic exchange constant, a = 8(8 + 1), and £y = (g2‘82/r?;¢)‘~’,
where 7;; is the distance between magnetic ions. After rather long calculations, the
expression

M;l()l’l = i(3a2 .—2(,1,) Z I:,zkEjk —+ iaz Z Ijk(zjjkEjm -+ ImkE]m) (4)
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for the fourth moment in the case of strong exchange has been found, the terms of the
first order with respect to I;; being omitted. All the sumsin (1) to (4) must be calculated
only for the sites occupied by magnetic ions.

Let N (4,,(C) be the number of magnetic ions having ¢, magnetic neighbours on the
first coordination sphere possessing @, sites, g, magnetic neighbours on the second
coordination sphere possessing @), sites, and 80 on; these numbers are functions of the
magnetic ion concentration C. The sums in (1) to (4) may be put down as functions
of the concentration by means of N (,,(C). For example,
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where n denotes the coordination sphere and a, its radius. For the sums which contain
three indexes it is necessary to use the average distances 7, between the sites of the
m-th and »-th coordination spheres. For some lattices these distances are given in
Table 1. Now the moments may be put down as follows:

Table 1
Average distances 7y, between the sites of m-th and »-th coordination spheres (a, = 1)

lattice N Tia Tig T 15 Tyg Tay Ty Taq 25 Tag
cubic 1.533 166 193 2.16 2.38 2.58 202 212 234 253 272
cubie face centred 143 1.66 1.92 216 238 258 217 212 234 252 2.73

cubic body centred 148 146 1.83 2.09 216 264 1.77 1.91 214 223 2.69

lattice Tys T34 T35 Tyg Ty Tis Tag 55 56 Ts6
cubic 2.56 252 2.69 285 3.06 2.83 3.01 3.09 3.13 3.38
cubic face centred 239 250 2773 285 2.86 284 3.00 3.08 3.15 3.62

cubic body centred 233 2.38 245 2.86 264 262 3.00 296 3.03 3.47
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Let the site occupation probability for the first coordination sphere be f,(C), for the
second sphere f,(C), and so on. Then the mean values of the numbers N, are

N ((C) = NH[O W(fi(0))2 (1 — f1(C)) %= (10)

and the moments can be expressed in terms of fy(C). Of course, the pair space correla-
tions between different ions can practically be essential only at short distances. Usually
such correlations are to be taken into account only for the first and, sometimes, the
second coordination spheres [1]. For all the other spheres we may put f.(C) = C.
Our task is to find the function £,(C) (and, may be, f,(C)). Let the EPR absorption line
experimentally obtained be approximated by some functions containing as many par-
ameters as line moments are available. This is practically always the case and makes it
possible to express the parameters mentioned in terms of the line moments. On the
other hand, the line characteristics such as linewidth, the amplitude, and so on are
functions of the line parameters in question. The symmetric EPR absorption lines in
solids may usually be approximated by functions having a form intermediate between
rectangular and Gaussian or between Gaussian and Lorentzian. In the first case the
Abragam’s function [10]
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may be used for which b and d are parameters and

2 be
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which gives
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The half-width of this line may be obtained as the solution of the equation
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Using the power and asymptotic series to represent the function erf [11] we have ob-
tained
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as a result of the numerical solution and the interpolation in the intermediate region,
the approximation error being not more than 29%,.

In the second case, i.e. the Lorentz-Gauss form {which usually is the case of a small
magnetic ion coneentration or a strong exchange) the mixed function

. ‘/Z (i) exp { —C(o — wg)?} 16
fro(w) = 7 P4 1+ Ao — o)? (16)
is useful having the moments
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where ¢(C/A4) = exp (—C/A) (1 — erf JO]4)~1. The parameters 4 and € are tied with
moments for which we got the formulae by using series for function erf [11], numerical
solution, tables [12], and Interpolation:

1.63 1.86 1
sz 1.22 + 3391 — 3z g o =03,

¢ 218 X 1012335 0,323 = 2 > 0.300

A7) 802455 0.300 =z = 0.198 , (18)
3.4 2218 | 0.198 > 2 > 3.56 X 104,
0.79 42, v < 3.56 X 1074,
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where x = M3/M,,
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where y = C[A. The half-width of the line (16) is
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The lines (11) and (16) are normalised by the condition | f(w)dw =1.

The formulae given above may be used for processing the experimental data on the
EPR line shape and width. Given the magnetic ion position probability distribution,
formulae (4) to (10) make it possible to obtain the absorption line moments. Contrarily,
the EPR line characteristics experimentally obtained can be used to find the probabil-
ity distribution mentioned (which is more interesting and important).

3. Example: Distribution of the Yons Mn2+ in Mg0

The experimental data on the concentration dependence of the EPR line width in
Mn?*:MgO in the concentration range 0.01 < € < 1 [13, 14] (see Fig. 1) could not be
explained on the basis of the supposition of equal site occupation probabilities [5].
The exchange parameters are [15]: I; = (19 + 8) em™, I, = (1 -+ 0.1) em™? for the
Mn?* jons in the first and second coordination spheres, respectively; so, this is the non-

300
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Fig. 1. The experimental data on the concentration dependence
00 ! O N of the EPR line width in Mn2+: MgO [13, 14]
0 )
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adiabatic case (I;/g8H = 10). Let us take the simplest case in which only the influence
of the presence of a magnetic ion at each occupied site on the site occupation probabil-
ities for the first coordination sphere is accounted for. In this case the probabilities
are equal to C for all the sites except those of the first coordination sphere and to
J(C) = £,(C) == C for the sites of the first sphere. According to that using formulae (8),
(9), and (10) we get
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The line shape being almost Lorentzian in the whole concentration range [13, 14],
formulae (18), (19), and (20) with M3/ M, < 1 give

Aa)1/2 = 2.52 VM_?,_/M‘I B (23)

For the parameter values given above, one obtains
[4.9/(C) + CT . 24
ABy5(C) = (240 + 35) V14f2(0) TR0 ¥ 1) 1305 (24)

Here ABy5(C) is the absorption line half-width experimentally obtained (in field units
AByjs = (h/gB) Awyz). Using a set of values of this quantity (see Fig. 1) and solving
{24) numerically, one gets the function f(C) shown in Fig. 2. This function possesses
a minimum at Opip = 0.4 with f(C <€ Cyn) > O which reveals the tendency to cluster
formation for small concentration values. In the concentration range ¢ < 0.1 our
results cannot be valid because of the fact that they lead to probability values exceed-
ing unity. To get rid of this discrepancy, one has to take into account the next pair
correlations and the exchange interactions inside the coordination spheres.

7
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Fig. 2. The concentration dependence of the site occupation proba-
bility for the first coordination sphere f(C). Dashed line: probability
for the random distribution
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The fact that different values of the parameters in question (especially of I,)
have been given by different authors (see [16]) does not affect our qualitative conclu-
sion that the Mn2* ion clusters in MgO are more numerous than it follows from the
equal probability hypothesis.

4. Inversion of the Method: Equal Probability Case in Dipolar System

The method proposed allows to predict a concentration dependence of the shape and
width EPR lines on condition that some suppositions are accepted for the distribution
of the magnetic ions. Let us consider the simple case (which has been considered hefore
by other authors [2 to 4]) in which the EPR line shape is defined by the dipole-dipole
interactions of randomly distributed magnetic ions. The problem is to calculate the
sums entering the formulae for the moments (or the type (1), (2)) only for the sites
occupied by magnetic ions. Kittel and Abrahams [2] assumed that the sums may be
calculated for all the sites and then multiplied by the concentration ¢ for the two-in-
dexes sums and by C? for the three-indexes ones. Then the line will be quasi-Lorentzian
(if the concentration is small) and the linewidth proportional to C.

In our notation, the random distribution means that f(C) = C in formula (10)
for all values of k. Using (10), (6), and (7) we have got

M, =aCS,, M, =a2C?S, + C(14a® — 3a) S, , (25)

where
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The sums S, £,, S, have been calculated for some lattices and are given in Table 2

Table 2
The lattice sums 8, S,, S

i 2ﬁ2 2 2152 2 2ﬂ2 2
we A o

cubic 5.1 43.3 0.48
cubic face centred 8.7 135.7 0.94
cubic body centred 7.4 96.4 0.70

In order to get an additional control, we have performed the numerical calculation
of the concentration dependence of the sum 8§ = 2 70, which differs from (1) only

by a constant multiplier. The scheme of the calculatlon ig the following: A fixed num-
ber N = 90 of ions has been distributed randomly by the computer inside the cube
containing »3 lattice sites. The sum S has been found for each of a large number of
distributions, n being the same. Using Student’s statistical distribution (see, for
example, [17]), the value of S for a given concentration ¢ = N/n® and the standard
deflection AS have been obtained for the reliability 0.9. Table 3 shows the results of
the calculation. These results are in agreement with formula (25).

21 physica (a) 55/1
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Table3

The results of computer calculation of the concentration dependence of the sum 8
(random distribution)

n C number of S AS
versions

45 0.0010 300 0.72 0.10

21 0.0097 186 6.76 0.36

14 0.0328 185 22.08 0.66

12 0.0521 180 33.92 0.82

11 0.0676 180 45.04 1.02

For concentrations small enough the line is exactly Lorentzian, and for its width
(18), (19), (20), and (25) give

2.50
Awys = € ——2% /838, , @7

ylda — 3

i.e. the width is proportional to the concentration. For large concentrations according
to (11), the line shape is intermediate between rectangular and Gaussian for M3/ M, >

> 1/3 and Gaussian for M3/M, = 1/3. The concentration which corresponds to the
Gaussian line is
1
Coauss = (l 3 > 4S3 2

142 /387 —8,° =9
Its values for spin 1/2, 1, 3/2, 2, 5/2 are given in Table 4.

Table 4

The values of concentration which corresponds to a Gaussian line defined by dipole—
dipole interactions (random distribution)

lattice spin
1/2 1 3/2 2 5/2
cubic 0.14 0.17 0.18 0.19 0.19
cubic face centred 0.10 0.13 0.14 0.14 0.14
cubic body centred 0.10 0.13 0.14 0.14 0.14
72
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/ Fig. 3. The concentration dependence of the linewidth for spin
L1t 8 =1/2, 8§ = 5/2, for random distribution

g &2 ¢4 08 08 10
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Using formulae (11} to (20), we have found the linewidth for § = 1/2 and § = 5/2.
This dependence may be approximated by the expression Awq;p == C%, where a = 1.0
for ¢ £ 0.05, « = 0.9 for 0.05 < € < 0.3, and & = 0.7 for C > 0.3 (see Fig. 3).

5. Conclusions

It seems that the method developed could be useful for the study of the magnetic ion
distribution in solid solution — in some cases, more useful than the methods tradition-
ally applied. The mere fact of magnetic ion clustering in magnetically diluted crystals
is well known; see, for example, [6] and [18] where Ni%* and Fe®+ clusters in MgO are
considered, respectively. In the survey [1] causes and consequences of the clustering
effect are discussed thoroughly. As to the paper presented, its purpose is to call one’s
attention to some new aspects of the statistical approach to the clustering effect.
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