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A method for studying the magnetic ion cluster forming in magnetically diluted solid para- 
magnets is proposed based on experimental data on the concentration dependence of the EPR line 
form and width. As it concrete example, the distribution of the Mn2+ ions in the &In2+ :MgO solid 
solution is considered. Some questions of the EPR concentration dependence in the case of the 
homogeneous random distribution of the magnetic ions is discussed, too. 

npe&ilOXeH MeTOH E13JTeHIIR K.XaCTepA3aUAH MarHHTHbIX MOHOB B MarHkiTOP~3BejJ&IIIIbIX 
TB&pnbIX IlapaMarHeTMKaX, 6a3~pylo~qai ic~  Ha E1ClIOJIb30BaHAH 3KCIIePUMeHTaJIbHbIX 
AaHHbIX I l O  KOHUeHTpaIWiOHHOii 3aBMCBMOCTH (POpMbI A IUMpPIHbI JIAHAEi 3nP. B HaqeCTBe 
IIptiMepa paCCMOTpeH0 PaCIIpeAeJIeHHe HOHOB Mnzt B TBepnOM paCTBOpC Mn2+ : MgO. 
06cyrnnam~c~ TaIEWe HeKOTOpbIe BOIIpOClI KOH~eHTPallHOIIHOfi 3aBMCHMOCTH 3nP B Cay- 
'Ele OnHOpOAHOI'O cJIyWi~HOI'0 paClIpeneJIeHHfl MarHHTHbIX HOHOB. 

1. Introduction 

There are many domains of scientific and technical research (see, for example, [l]) 
where i t  is necessary to know the magnetic ion distribution in the crystal lattice of 
a magnetically diluted crystal (solid solution). For transition ions in diamagnetic crys- 
tal such an information may be obtained by means of the concentration dependence 
study of the electron paramagnetic resonance (EPR). I n  the first paper [2] on the theory 
of the concentration dependence of the EPR line shape and width the supposition of 
a random distribution of magnetic ions has been accepted, i.e. for each site the occupa- 
tion probahility has been considered as equal to the concentration of magnetic ions 
C = N J N ,  where Ni is the number of magnetic ions and N ,  the number of accessible 
sites. The same supposition has been used in the following papers [3 to  51. However, 
some authors have mentioned the discrepancy between experimental concentration 
dependence data and theoretical results based on the random distribution supposition 
- for example, NiO-MgO (see [6] and references therein), in Mn2f : CdTe [7], in 
Cr3+ :A1,0, [S], and so on. I n  the paper presented a method of approximate statistical 
description of the magnetic ion distribution using some EPR experimental data is pro- 
posed and an example of its application is considered. A kind of inversion of the method 
is discussed, too. 

2. Method 

To treat the problem in question, the method of moments may be used. Let us consider 
the case in which the form of the line shape function and its width are due only to the 
dipolar and exchange interactions. Bearing in mind symmetric lines, let us use the 
second and the fourth moments. For a powder sample the following expressions have 
been obtained [9]: 
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for weak exchange I < gbH (adiabatic case [ l o ] )  and 

for strong exchange I >gbH (nonadiabatic case [ l o ] ) .  Here N is the number of mag- 
netic ions, 2j.k the isotropic exchange constant, a = X(S + l), and E j k  = (g2F2/rjkj2, 
where r j k  is the distance between magnetic ions. After rather long calculations, the 
expression 

for the fourth moment in the case of strong exchange has been found, the terms of the 
first order with respect to Ijk being omitted. All the sums in (1) to  (4) must be calculated 
only for the sites occupied by magnetic ions. 

Let N{qk!(C) be the number of magnetic ions having q1 magnetic neighbours on the 
first coordination sphere possessing Ql sites, qz magnetic neighbours on the second 
coordination sphere possessing Qz sites, and so on; these numbers are functions of the 
magnetic ion concentration C. The sums in (1) t o  (4) may be put down as functions 
of the concentration by means of NIPk)(C) .  For example, 

where n denotes the coordination sphere and a, its radius. For the sunis which contain 
three indexes it is necessary to  use the average distances F,, between the sites of the 
m-th and n-th coordination spheres. For some lattices these distances are given in 
Table 1 .  Now the moments may be put down as follows: 

T a b l e  1 
Average distances rm, between the sites of m-th and n-th coordination spheres (a ,  = 1) 

cubic 1.53 1.66 1.93 2.16 2.38 2.58 2.02 2.12 2.34 2.53 2.72 
cubic face centred 1.43 1.66 1.92 2.16 2.38 2.58 2.17 2.12 2.34 2.52 2.73 
cubic body centred 1.48 1.46 1.83 2.09 2.16 2.64 1.77 1.91 2.14 2.23 2.69 

cubic 2.56 2.52 2.69 2.85 3.06 2.83 3.01 3.09 3.13 3.38 
cubic face centred 2.39 2.50 2.73 2.85 2.86 2.84 3.00 3.08 3.15 3.62 
cubic body centred 2.33 2.38 2.45 2.86 2.64 2.62 3.00 2.96 3.03 3.47 
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with 

Let the site occupation probability for the first coordination sphere be fi(C), for the 
second sphere f2(C), and so on. Then the mean values of the numbers N{qk)  are 

N{*k}(C) = N rI [ C K ( f k ( C ) ) q k  (1 - f m ) Q ~ - V  (10) 
k 

and the moments can be expressed in terms of ft(C). Of course, the pair space correla- 
tions between different ions can practically be essential only a t  short distances. Usually 
such correlations are to  be taken into account only for the first and, sometimes, the 
second coordination spheres [l]. For all the other spheres we may put fk (C)  = C .  
Our task is to find the function fi(C) (and, may be, f,(C)). Let the EPR absorption line 
experimentally obtained be approximated by some functions containing as many par- 
ameters as line moments are available. This is practically always the case and makes it 
possible to express the parameters mentioned in terms of the line moments. On the 
other hand, the line characteristics such as  linewidth, the amplitude, and so on are 
functions of the line parameters in question. The symmetric EPR absorption lines in 
solids may usually be approximated by functions having a form intermediate between 
rectangular and Gaussian or between Gaussian and Lorentzian. I n  the first case the 
Abragam's function [lo] 

1 b + (W - o ~ )  1 b - (W - wO) + - erf 
4b  V2d 4b y 2 d  

f A ( w )  = - erf 
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may be used for which b and d are parameters and 
b2 6 4  
3 5 

M2 = d2 + -, M4 = 3d4 + 2d2b2 + - 
which gives 

d -  2 - M2 - f-2 b2 = 3 f-. (13) 

The half-width of this line may be obtained as the solution of the equation 

Using the power and asymptotic series to  represent the function e r f  [ I l l  we have ob- 
tained 

b 
--> 1 .9 ,  a =  

b 
6d2 - 6 2  d 

as a result of the numerical solution and the interpolation in the intermediate region, 
the approximation error being not more than 2%. 

I n  the second case, i.e. the Lorentz-Gauss form (which usually is the case of a small 
magnetic ion concentration or a strong exchange) the mixed function 

0.7 2 - > 0 

(16) )lA - exp (-c(o - o o ) 2 )  ( 1 + A(w - oo)2 
f L - G ( W )  = -‘p z 

is useful having the moments 

1 

where p(C/’A) = exp ( -C/A)  (1 - erf fC?)-l. The parameters A and C are tied with 
moments for which we got the forinulae by using series for function erf [ll], numerical 
solution, tables [12], and interpo1at)ion : 

1.63 1.86 -jj- 1 > x 2 0.323, -t r/l-3. 1.22 + 3.39 V c T Z  ’ 
2.18 X 1016 z ~ ~ . ~ ~  , 0.323 2 z 2 0.300 , 
802 2 5 . 5 5  ) 

3.4 22.18 , 0.198 2 x 2 3.56 x ) 

0.300 2 2 2 0.198 ) 

C 

0.79 x2 ) 5 5 3.56 x 10-4, 
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where x = Mg/n/r,, 

b j e  = 

3 19 

2 
~ (0.61 - 0.19 In y - 0.03 In2 y) , 

~ (0.61 - 0.19 In y + 0.02 ln2 y) , 

0.1 j y 5 1 , 42 

I/A 
2 

1 5 y 5 10 , 

1 T y - 0 . 8 4 4  , l S y 5 1 0 ,  
A =  I y-0.662 , O . l ~ y ~ 1 ,  

-(l -- 0.64 fi+ 0 . 2 5 ~ )  , y 5 0 . 1  , 

where y = C / A .  The half-width of the line (16) is 

u 2  I d A ( 1  + 2Y) ' 
y 5 0 . 1  , 

(19) 

1.66 I /m) ' 
y 1 1 0 .  

00 

The lines (1 1) and (16) are normalised by the condition J f (w )  dw = 1 . 
The formulae given above may be used for processing the experimental data on the 

EPR line shape and width. Given the magnetic ion position probability distribution, 
formulae (4) to  (10) make it possible to  obtain the absorption line moments. Contrarily, 
the E P R  line characteristics experimentally obtained can be used to  find the probabil- 
ity distribution mentioned (which is more interesting and important). 

-w 

3. Example: Distribution of the Ions Mn2+ in MgO 
The experimental data on the concentration dependence of the EPR line width in 
Mn2+ :MgO in the concentration range 0.01 < C < 1 [13, 141 (see Fig. 1) could not be 
explained on the basis of the supposition of equal site occupation probabilities [ 5 ] .  
The exchange parameters are [15]: Il = (19 f 3) cnrl, I2 = (1 & 0.1) cm-I for the 
Mn2+ ions in the first and second coordination spheres, respectively; so, this is the non- 

Fig. 1. The experimental data on the concentration dependence L of the EPR line width in Mn2+ : MgO [13, 141 
02 a4 06 oa 10 

;ooo 
C- 
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adiabatic case ( I , /gpH x 10). Let us take the simplest case in which only the influence 
of the presence of a magnetic ion a t  each occupied site on the site occupation probabil- 
ities for the first coordination sphere is accounted for. I n  this case the probabilities 
are equal to C for all the sites except those of the first coordination sphere and to 
f ( C )  f,(C) 4 C for the sites of the first sphere. According to  that using formulae (S), 
(9), and (10) we get 

/ \ 

The line shape being a.lmost Lorentzian in the whole concentration range [13, 141, 
formulae (18), (19), and (20) with N z / M 4  Q 1 give 

Am112 = 2.52 / T M 4 .  (23) 
For the parameter values given above, one obtains 

Here ABl,2(C) is the absorption line half-width experimentally obtained (in field units 
ABIp = (h/gf i )  Aw1/2). Using a set of values of this quantity (see Fig. 1 )  and solving 
(24) numerically, one gets the function f (C) shown in Fig. 2. This function possesses 
a minimum a t  Cmin 0.4 with f(C Q Cmin) > C which reveals the tendency to cluster 
formation for small concentration values. I n  the concentration range C 0.1 our 
results cannot be valid because of the fact that they lead to probability values exceed- 
ing unity. To get rid of this discrepancy, one has to  take into account the next pair 
correlations and the exchange interactions inside the coordination spheres. 

Fig. 2. The concentration dependence of the site occupation proba- 
bility for the first coordination spheref(C). Dashed line: probability 
far the random distribution 

0 02 04 06 08 10 



Clustering of Magnetic Ions in Diluted Solid Paramagnets 321 

The fact that different values of the parameters in question (especially of I,) 
have been given by different authors (see [IS]) does not affect our qualitative conclu- 
sion that the Mn2+ ion clusters in MgO are more numerous than i t  follows from the 
equal probability hypothesis. 

4. Inversion of the Method: Equal Probability Case in Dipolar System 

The method proposed allows to predict a concentration dependence of the shape and 
width EPR lines on condition that some suppositions are accepted for the distribution 
of the magnetic ions. Let us consider the simple case (which has been considered before 
by other authors [ 2  to 41) in which the EPR line shape is defined by the dipole-dipole 
interactions of randomly distributed magnetic ions. The problem is to calculate the 
sums entering the formulae for the moments (or the type (l), (2)) only for the sites 
occupied by magnetic ions. Kittel and Abrahams [ 2 ]  assumed that the sums may be 
calculated for all the sites and then multiplied by the concentration C for the two-in- 
dexes sums and by C2 for the three-indexes ones. Then the line will be quasi-Lorentzian 
(if the concentration is small) and the linewidth proportional to  C. 

I n  our notation, the random distribution means that fk(C) = C in formula (10) 
for all values of k.  Using ( l o ) ,  (6), and ( 7 )  we have got 

&*f2 = aCS, , 

AS’, = + QnE, ,  

M4 = a2C2S2 + C(14a2 - 3a) S, , 
where 

n 

The sums S,, F2, S, have been calculated for some lat.tices and are given in Table 2. 

Table 2 
The lattice sums S,, 8,. S, 

lattice 

cubic 5.1 
cubic face centred 8.7 
cubic bodv centred 7.4 

43.3 
135.7 
96.4 

0.48 
0.94 
0.70 

I n  order t,o get an additional control, we have performed the numerical calculation 
of the concent.ration dependence of the sum AS’ = C’ r$, which differs from ( 1 )  only 

by a constant multiplier. The scheme of the calculation is the following: A fixed nuin- 
ber N = 90 of ions has been distributed randomly by the computer inside the cube 
containing n3 lattice sites. The sum S has been found for each of a large number of 
distributions, n being the same. Using Student’s statistical distribution (see, for 
example, [17 ] ) ,  the value of S for a given concentration C = N/n3 and the standard 
deflection A S  have been obtained for the reliability 0.9. Table 3 shows the results of 
the calculation. These results are in agreement with formula (25). 

j, k 

21 phyaica (a) 55/1 
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Table  3 
The results of computer calculation of the concentration dependence of the sum X 
(random distribution) 

1L C number of S AS 
versions 

45 0.0010 300 0.72 0.10 
21 0.0097 186 6.76 0.36 
14 0.0328 185 22.08 0.66 
12 0.0521 180 33.92 0.82 
11 0.0676 180 45.04 1.02 

For concentrations sniall enough the line is exactly Lorentzian, and for its width 
(18), (19), (20), and (25) give 

i.e. the width is proportional to  the concentration. For large concentrations according 
t o  (l l) ,  the line shape is intermediate between rectangular and Gaussian for M$M4 > > 1/3 and Gaussian for M$M4 = 113. The concentration which corresponds to  the 
Gaussian line is 

I ts  values for spin 1/2, 1, 3 /2 ,  2, 5.12 are given in Table 4. 

Table  4 
The values of concentration which corresponds to a Gaussian line defined by dipole- 
dipole interactions (random distribution) 

lattice spin 

112 1 312 2 512 

cubic 0.14 0.17 0.18 0.19 0.19 
cubic face centred 0.10 0.13 0.14 0.14 0.14 
cubic body centred 0.10 0.13 0.14 0.14 0.14 

J-= 5 

T 

c S-$ 

Fig. 3. The concentration dependence of the linewidth for spin 
S = 112, S = 512, for random distribution 

L' S? GI 06 06 70 
C- 
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Using formulae (1 1) to (20), we have found the linewidth for S = 1/2 and S = 512. 
c Ga, where a = 1.0 This dependence may be approximated by the expression 

€or G & 0.05, a: = 0.9 for 0.05 < C & 0.3, and a: = 0.7 for G > 0.3 (see Fig. 3). 

5. Conclusions 
It seems that the method developed could be useful for the study of the magnetic ion 
distribution in solid solution - in some cases, more useful than the methods tradition- 
ally applied. The mere fact of magnetic ion clustering in magnetically diluted crystals 
is well known; see, for example, [6] and [18] where Ni2+ and Fe3+ clusters in MgO are 
considered, respectively. I n  the survey [l] causes and consequences of the clustering 
effect are discussed thoroughly. As to  the paper presented, its purpose is to  call one’s 
attention to  some new aspects of the statistical approach to  the clustering effect. 
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