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We discuss a new form of resonant response for a quadrupolar nuclear spin system subjected to 
applied alternating magnetic fields. 
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Let a quadrupolar nuclear spin system be acted on 
by two magnetic fields: a sequence of pulses (fre-
quency co, amplitude H J along the Y-axis of the elec-
tric field gradient (EFG) tensor, and a continuous low 
frequency (l.f.) field (frequency Q <^co, amplitude H2) 
along a unit vector a. In the representation used in 
[1, 2], the equation of motion for the density operator 
g(t) is 

idg(t)/dt (1) 

= [ASZ + (pyf{t) Sy + co2 & S cos(ß t) + Hd, e(t)], 

where 
(i) A = COq — co, with coQ denoting the NQR fre-

quency, 
(ii) cpy = yH1tw, y being the gyromagnetic ratio and 

fw is the pulse duration, 
00 

(iii) /(£) = Z S(t-kte — tJ2), where tc is the multiple-
k = 0 

pulse sequence period, 
(iv) co2=yH2, and 

2 
(v) Hd = Z H™ is the secular part of the dipole-

m = - 2 

dipole interaction term of the spin Hamiltonian 
(see [2]). 

To solve (1) we apply a unitary transformation to all 
operators according to 

a = R+{t)aR(t) (2) 

with 

R(t) = P{t)exp(-2niktnS/tc), k = 0, ±1, ± 2 , . . . , (3) 
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where P(t) is the solution of the equation 

idP(t)/dt = {ASZ + cpyf(t) Sy} P(t)-coe P(t) nS, 

P( 0) = 1 (4) 

with 
coe = 2 c o s - 1 [cos(^y/2) cos(Atc/2)]/tc (5) 

and 

nt = sin(cpy/2)/sin(coe tJ2), n2 = 0, 

n3 = cos (<py/2) sin(Jrc/2)/sin(a>e tj2). (6) 

Then (1) may be rewritten in the form 

idg{t)/dt = [QknS + co2 o 5 c o s ( Q t ) + Hd,g(t)], (7) 

where 

Qk=coe + 2nk/tc, (8) 

a.S= Z Aqexp(2nqti/tc) + Ak, (9) q*k and 

&d= Z Bqexp(2nqti/tc) + Bk + H°d. (10) 
q*k 

Aq and Bq are the Fourier coefficients. 
Analysis of (7) with expressions (8)-(9) reveals a 

resonant absorption of the l.f. field energy by the spin 
system in the case Q = Qk, k = 0, ±1 , ±2 , To take 
into account the role played by the corresponding 
resonance terms of the right-hand side of (7), we use 
the unitary transformation 

g*(t) = e x p ( i Q n S t ) g(t) exp(-iQnSt). (11) 

After this transformation the evolution of the density 
operator is determined by the equation 

idQ*(t)/dt = [Hef{+V(t),Q*(t)], (12) 

where the time-independent term Hef{ is given by 
2 

He{{ = H0 + Hd with Hd following from Hd = Z H™ 
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Also, 

H0 = {Qk-Q)nS + a)2(2coe r c ) _ 1 sin(coe r c /2 )«5 . (13) 

Now we consider the condition 

II He{(\\>\\V(t)\\, (14) 

a case which is experimentally realizable. From (14) 
it follows that there exists some z such that for t ^ z 
the term V(t) on the right-hand side of (12) may be 
neglected, whereas not for t > z. The problem to be 
solved is: given a value M(0) = M 0 for the component 
of the macroscopic magnetic moment M along the 
direction n (see (6)), what is the value M(r) = M r of this 
component at some later time? 

Let M 0 be created by a very short pulse applied to 
the system at equilibrium. For t ^ t w e have 

ide*mt = [Heff,Q*(t)] (15) 

with the initial condition (in the high-temperature 
approximation) 

g*(0) = \ - ß L 0JQnS. (16) 

Here ßL is the inverse temperature of the lattice. The 
formal solution is 

Ö* (t) = exp ( - i Heff t) q* (0) exp (i He({ t). (17) 

Taking He({ =fx +f2 with fx = H0, f2 = H°d, one ob-
tains 

[ t f e f f , / l ] = [ t f e f f , / 2 ] = [ / l , / 2 ] = 0 (18) 

and 

S p ( / J = 0, Sp( / m / m . ) = 3mm, Sp( / m ) 2 ; m,m' = 1,2. 
(19) 

From (17)—(19) it follows that 

S p Iß* ( t ) fm] = Sp[Q*(0)fm], m = 1 , 2 , ( 2 0 ) 

and, in particular, 
S p t e * ( T ) / j = S p [ e * ( 0 ) / j . (2 i ) 

Using (16) and (21), we then have 

( Q k - Q ) 2 

MX(Q) = M0 (Qk-Q)2 + co\{2coetcr2 sin2KtJ2) + co2
oc' 

where 
co,2oc = Sp(H°d)2/Sp(nS)2 (23) 

This is the solution of the problem above mentioned. 
To verify the theoretical predictions, a set of some 

experiments was performed. With a home-made 
multiple-pulse NQR spectrometer, the 35C1 NQR in 
polycrystalline KC10 3 was observed at 77 K and 
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Fig. 1. Time dependence of the magnetization (a) in the ab-
sence of the l.f. field; (b) in the presence of the l.f. field. 
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Fig. 2. Magnetization M t vs. the l.f. field frequency Q. 

<x>Q = 28.9539 MHz. Obtained by means of crossed 
coils, two magnetic fields were realised: the multiple-
pulse sequence and the continuous l.f. field. The MW-4 
multiple-pulse sequence 90° — (tc/2 — (p90, — tc/2)N was 
used. The l.f. field amplitude was ~2.5 G. 

Results are presented in Figs. 1 and 2. Figure 1 
shows M(f) for t < Ti under the multiple-pulse se-
quence, after the preparation pulse, both in the ab-
sence of the l.f. field (Fig. 1 a) and in the presence of 
this field with Q = a>e (Fig. 1 b). One sees here that the 
l.f. field clearly influences the spin system behavior. 
Figure 2 shows the dependence on Q of the value Mv, 
of M at time v (see Fig. 1 b): Mv(ß). This curve was 
obtained for the following pulse sequence parameters: 
cpy = 7i/2, tc = 100 ms, A = 0. The values of Q for which 
the curve has minima are Q0/2n = 2.4 kHz, \ Q_J2ti\ 
= 7.6 kHz, QJ2n= 12.4 kHz, |^_2/2TT| = 17.6 kHz, 
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Q2/2 n = 22.4 kHz. For these Q values the absorption 
of the l.f. field energy by the spin system becomes 
maximum. This is a new resonance phenomenon for 
nuclear quadrupole spin systems. 

The experimental results are in good agreement 
with the theoretical curve (22), which suggests that the 
supposition v ~ T is plausible. 

A problem, similar to that studied in this paper was 
considered in [3, 4]. Our approach, however, is more 
general both theoretically and experimentally. Relax-
ation phenomena also can be examined in the frame-
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work of the problem in question, and the results of 
such investigations can be used for the study of slow 
molecular motions in solids. 

We conclude with a remark concerning terminol-
ogy. In [3, 4] the term "effective field" was used for the 
quantity coe n (see (5), (6)). From the point of view of 
our results it would be more fitting to use "effective 
fields" for the quantities co^n, with 

2 
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k = 0, ±1 , ± 2 , . . . . (24) 
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