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Abstract 

The results are presented of a theoretical consideration of the nuclear quadrupole resonance (NQR) and spin-spin 
relaxation for a paramagnetic body containing nuclei of two different sorts coupled by the strong homonuclear and 
heteronuclear dipole-dipole interactions and influenced by an external multiple-pulse radiofrequency magnetic field 
acting only on nuclei of one sort. Kinetic equations were obtained giving the possibility of finding the time dependence of 
the magnetization of the body and the kinetic coefficients calculated as a function of the multiple-pul& field parameters. 
The possibilities of using the results in question for molecular structure and molecular dynamics investigations are briefly 
surveyed. 

1. Introduction 

It is well known that by means of studies of 
different kinds of paramagnetic resonance and 
relaxation a great deal of important information 
concerning inner molecular structure, interac- 
tions, and motion may be obtained. To get such 
information for some concrete molecules, the 
proper choice of paramagnetic body and of its 
magnetization time dependence is necessary. This 
choice is usually of the following kind (for example 
see Refs. [l-3]): as the body in question, a nuclear 
paramagnetic containing nuclei of two different 
s_orts and_ influ_enced by an external magnetic field 
e(t) = Ho + yII with the radiofrequency (r.f.) part 
H1 (t) of the H(t) acting on the nuclei of two sorts; 
and as the magnetization time dependence, the 
NMR and nuclear magnetic spin-spin relaxation. 

*Corresponding author. 

In addition to the “NMR scheme” described 
above, an analogous “NQR scheme” could be con- 
structed which would be profitable in the sense that 
such a scheme would make it possible to eliminate 
the influence of the constant part & of fi( t) on the 
inner molecular structure and the dynamics to be 
obtained and the r.f. part z, acting only on nuclei 
of one sort. 

This paper is aimed at presentation of the results 
of a theoretical consideration of some problems of 
NQR spin dynamics (see the Abstract); it is hoped 
that these results can be used for construction of 
the NQR scheme mentioned above. 

2. Hamiltonian of the system 

Let us consider a spin system of I > 1 and 
S = l/2 spins and retain only those terms in 
the Hamiltonian ‘H(t) which are necessary for 
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description of dynamics of the spin system 
with homonuclear and heteronuclear interactions 
during the time intervals t -sic T,, T, being the 
spin-lattice relaxation time. The evolution of 
the spin system influenced by the external multiple- 
pulse r.f. magnetic field acting only on I spins can 
be described by the state operator p(t) which is a 
solution of the von Neumann equation (ti = 1) 

i$) = [7-l(t), p(t)] (1) 

with Hamiltonian 

‘Fl(t) = at, + zdd + ‘Hr.f.(t) 

Here 

(2) 

‘lQ = c eQqm 
i 41(2Z- 1) 

[31:‘2 - I’i2 + ; (Zi2 + Z?)] 

(3) 
represents the interaction of the Z-spin system with 
the elect&field gradient, 

xdd=%S+x% k=ZSandZZ (4) 
k 

where ‘l-tss,3-I,s and ‘HFtN are the Hamiltonians of 
the dipole-dipole interactions between S-S, Z-S, 
and Z-Z spins, respectively; F&r.(t) gives the action 
of r.f. field on the Z-spin system: 

7&f(t) = 25X,f(t)cos(wt) (5) 
i 

where @iI and w are the r.f. field amplitude and 
frequency andf( t) gives the times of appearance of 
the r.f. field pulses. 

Using the projection operators ekn for the spins 
Z, andpk, for spins S = l/2, defined by their matrix 
elements (mle6&) = 6_~S,,~ and (mlpfn,,,In) = 

6 16 I and commutation relation: mm nn, 

[ek,, pi,n,] = 0 (6) 

[ek,, e;,,,] = Sij (Snm'emn' - b,he,l,) (7) 

the following expressions may be obtained: 

‘FIQ = (21+ I)-’ ~~uf&,, (8) 

mn 

(9) 

(10) 

(11) 

W.f.(t) = 2 71 x -$J~kf(t) cos G.&k (12) 
i mn 

where wt,, = X, - An, &,, are the eigenvalues of 
the operator ‘IQ and FLm,,,,, D,,,,,,, G&,,,,,, and 
Z& are the matrix elements of the dipole-dipole 
Hamiltonians 3-Iss, ‘H1s, ?-tI1 and operator ,‘I 
(where iis the unit vector of Z?i), respectively. 

It proves to be profitable to carry out the unitary 
transformation of the operators used by means of 
the operator Q(t) = exp(iAt) with 

A = (2Z+ 1)-l xx wmek (13) 
i mn 

where w,,,, = w if w M wk and w = w$, otherwise. 
Substituting p(t) = Q’( t)fi( t)Q( t) into (1) we obtain 

i% = [T?(t), /3(t)] 

where 

7-i!(t) = 1-I“, + gi,, + 

(14) 

6.f. (t) (15) 

tiA = (2Z+ 1)-l cc A,ek 
i mn 

(16) 

(17) 

(18) 

(19) 

i mn 

Here 
(20) 

A,,,,, = w;, - %Vl (21) 

din,,,, = Dy,,,, (S,,,, + ~5~) (22) 

g;,,,,, = G;,,,,,,,,, K4m + blw)(4nfi + bf,_o 

+ (4n”~ + 4n5z)(4nfi~ + &I%)1 (23) 

and ti = -m, fi = --)2. When obtaining Eqs. (18)- 
(20) the rapidly oscillating terms called non-secular 
were omitted. 
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3. Effective Hamiltonian (zeroth approximation) equation 

The action of a periodic r.f. field pulse on a spin 
system consists of a preparatory pulse taking the 
spin system out of equilibrium and a multiple-pulse 
sequence. The state operator, p+(O), immediately 
after the end of the action of the preparatory 
pulse forms the initial condition for Eq. (14) 
which describes the evolution of the spin system 
under the influence of a multiple-pulse periodic 
action. 

id$) = [‘Fla + ti7,r.(t)]P,,(t) - P,,(t)H(‘) 

with initial condition 

PO(O) = 1 

where H(O) is given by 

H(O) = 41, Uo(tc) 
fc 

Eq. (14) has a solution 

P(t) = U(G+(O) u’(t) (24) 

where U(t) is the solution of the following 
equation: 

=tln( Texp{ -iI: dt[‘& + ?-&r.(I)]}) 

= - w,(ii~) (34) 

Here T is the Dyson time-ordering operator, w, the 
effective frequency, and direction a’ of (3, can be 
obtained from equations 

cos (w&/2) = cos (4/2) cos (AtJ2) (35) 

sin W2) 
a1 = sin (w&/2) 

a2 = 0 
with initial condition 

U(0) = 1 (26) 

The periodicity of H(t) allows us to write the 
evolution operator u(t) in Floquet form [4] as 

u(t) = P(t)eeitH (27) 

where P(t) has the same periodicity as Z?(t) and H 
is the time-independent effective Hamiltonian. 

In the multiple-pulse experiments tC is usually 
chosen in such a manner that e =]I 7-&d]] tC < 1 
(here I IT-& 11 is the norm of the operator ‘7&d), 
so we can expand 
follows: 

the operators P(t) and H as 

(28) 

(29) 

From Eq. (25) we have for ,LL = 0 

.dUo(t) 
I- = ti&)Uo(t) 

dt 
(30) 

where Go(t) = tin + 7&r.(t) and 

Uo(t) = PO(t)e-irH(o) (31) 

The operator PO(t) is the solution of the 

(32) 

(33) 

aj = ~0s (dd4 sin (AU4 
sin (w,t,/2) (36) 

and .?? is the effective spin operator satisfying the 
commutation rule: [X1,X2] = iC3 [5]. Using the 
unitary transformation 

u*(t) = Po’(t)U(t) (37) 

Eq. (25) may be written as follows: 

i? = [H(O) + ?&(t)]U*(t) (38) 

with initial condition 

u*(o) = 1 (39) 

where 

%d(t) = ‘HSS + c a;(t) 
k 

(40) 

(41) 

4. Quasi-equilibrium magnetization 

Let us first consider the case where ye x wfz M 
IS 

WI x w&, where wfW = [Sp(‘H2)/Sp(~C) ] 

w9 = 

2 ‘12, and 

[~P(~~s)l~P(Y~~,S21’ lFi [6]. The solution 
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of Eq. (25) can be expressed in terms of the 
operator 

C(t) = P,+(t)P(t) = 1 + 2 e’“CJt) 
/A=1 

(44 

and 

C/JO) = 0 for j.~> 1 (43) 

Using Eqs. (32) and (38) the equation for C(t) can 
be obtained: 

i% = [H(O), C(t)] - C(t)(H - H(O)) 

+ ‘F7&W(4 (44 
and C(0) = 1. In the first approximation with 
respect to e we have from Eq. (44): 

iy = [H(O), C,(t)] - H(l) + G&(t) (45) 

and Ci (0) = 0. Consider the Fourier series of the 
operators C,(t) and e&(t): 

c,(t) = 2 ~,e-~(2Nic) 
(46) 

II=--00 

The operators 7$ satisfy the following com- 
mutation rules: 

[H(O), ‘Hi] = -‘&tit (49) 

with 

/,=0,+&l for k=ZS 

1,=0,+&1,h;,f2 fOl- k=ZZ (50) 

Inserting Eqs. (46) and (47) into (45) we obtain: 

2 F Bne-i(2mi/ic) 

n=-_oo c 

= 2 [H(O), Bnle-i(2Mb) _ ~(1) + tiss 

n=-CC 

k k n=-coIk#O 

and for n # 0 Eq. (51) gives: 

(52) 

We shall look for the solution of Eq. (52) in the 
form 

B,,=~~b~‘H$ (53) 
k lk#O 

Substitution of Eq. (53) into Eq. (52) gives: 

b; = 
cz cc 

2(nn + 0,) 
(54) 

Using the initial condition Ci(0) = 0 for B. we 

obtain the expression 

(55) 
For n = 0 Eq. (51) gives 

H(i) = [H(O), Bo] + ‘Flss +c 7-l; +c c @-lo 
k k I#0 

(56) 

Inserting Eq. (55) into (56) and (46) and using 
relation (49) we obtain: 

H(l) = ‘Flss + c 3-I; +c c e!, cot l9,,7-@ (57) 
k k h#O 

C,(t) =$ 

Unitary transformation 

U,(t) = [l + C,(t)]+u*(t) 

of Eq. (38) gives 

(58) 

(59) 

iy = [Hen - H(O)Cf(t) + H(‘)CI(~) 

- Cl w-G&>1 u,(t) 
where 

& = H(O) + H(‘) 

(6’4 

(61) 
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The time-dependent part of the right-hand side of 
Eq. (60) is proportional to e2 and is taken into 
account by means of perturbation theory [3]. So 
it may be assumed that during the time MT* the 
spin system will reach a quasi-equilibrium state 

]3,71: 

Peq = 1 - %qf4fr (62) 

For the times MT* we may also neglect the absorp- 
tion of r.f. field energy by the spin system and use 
the low energy conservation: 

Q4P+Fweffl = &-+e&ff) (63) 
which gives: 

k lk#O 

(W 

where Meq is the quasi-equilibrium magnetization 
in the a’ axis direction and MO is the magnetization 
immediately after the first pulse. The expression 
(64) shows that the observed quasi-equilibrium 
magnetization decreases which means that for 
the times M~(*l/ikdib occurs with an energy 
exchange between Z and S spin systems. The 
destruction of the Z-s 

P 
in 

large if Sp’H&/Sp(ZZCo 
magnetization may be 

)2 >> 1. 
Further evolution of the spin system leads to a 

decrease of the magnetization under the influence 
of the time-dependent perturbation. 

5. Kinetic equation 

In the case where w, M wii: B wlTC B &LC, which 
can take place, for example, if 7s >> ̂ fr, the Hamil- 
tonian in Eq. (38) can be divided into two parts: 

7-l(t) = 3-to + V(t) (65) 

where 

Ho = H(O) + 7-&s (66) 

V(t) = Vo(t) + V,(t) (67) 

The perturbation V(t) consists of the time-indepen- 
dent part 

k k lk#o 
(68) 

k n#OC#O 

After the unitary transformed [7] 

U2(t) = n exp [i? (X2)] eUiAm 
m#O C 

x exp 1 -i- 2ym (-3)j u’(t) a 

where 

L Lc J 

Eq. (38) gives 

(70) 

(71) 

1 U2(4 (72) 
k I,#0 

where 

v2ct) = C(eiPMiC)R; + e- &mlC)R;*) (73) 
mn 

The spin system can be characterized by the 
two integrals of motion ZZ(O) 
([Z-Z”‘, 7&] = 0) and on time =T2anzs 2:: 
operator has the’form [3,7] 

pq = 1 - &Z(O) - mss (74) 

In the course of the further evolution of the spin 
system two processes take place. At first, the per- 
turbation Vo, which does not commute either with 
H(O) or with 7fss leads to the thermal equilibrium 
between Z and S spin systems which is the reason 
for the magnetization decrease [6,8,9]. Secondly, 
Vi (t) causes the resonance processes [3,7] where n 
Z-spins absorb the r.f. field energy nw, and the 
S-spin system absorbs the r.f. field energy 

m 
W, = 2m7r/tc - nw,. This second process also 
leads to a decrease of magnetization. 
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The equations that describe the time evolution of 
the quantities Q and p from Eq. (74) may be 
obtained using a well known procedure [3,7]. The 
result is: 

(75) 

Here TI” is inverse cross-relaxation time: 

J 
M 

TIi’ = FIs dr cos w,T[(~) 
0 

where 

ra = c c~co112sp(‘H:s’H~~)/sp(a’~)2 
I#0 

(76) 

for k = IS (77) 

(78) 

Wnm are the rates of relaxation transitions: 

(80) 
where 

(81) 
(82) R;“(T) = eXp(i’FlssT)R,” exp(-i&r) 

To calculate the kinetic coefficients (76) and (80) 
the correlation functions t(r) [2,6] and &(T) are 
needed. Coefficient IrS is connected with the 
second moment of the quadrupole-resonance line 
of the Z spins [6]. 

The dependence of the kinetic coefficient T&’ on 
the pulse sequence parameters is 

T,-s 
sin2 f+ 

=e: (83) 

For the Warn it is easy to calculate their dependence 

on the pulse period fc [7]. For example, if A = 0 
and 4 = 7r/2, the main effect on the spin system 
dynamics is due to the term &, which leads to 
the time of magnetization decrease =tC4 for homo- 
nuclear and z:ti8 for heteronuclear dipole-dipole 
interactions. 

At lt;t, let us consider a case where w, >> WE, 

w:;> Wloc. This case is similar to the previously 
considered one, the difference being that the 
quasi-equilibrium state operator is: 

I (84) 

In the case in question the kinetic equations for Q 
and ,Ll are similar to those in Eq. (75) but without 
the last right hand side terms proportional to T,;' . 

6. Conclusion 

The results presented in this paper show the 
multiple-pulse NQR method to be an effective 
means of molecular structure, interaction and 
motion investigations based on the use of nuclear 
resonance and relaxation data to obtain informa- 
tion about the strong heteronuclear dipole-dipole 
interactions. 
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