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Abstract – A collision of viscoelastic bodies is analysed within a mathematically rigorous ap-
proach. We develop a perturbation scheme to solve continuum mechanics equation, which deals
simultaneously with strain and strain rate in the bulk of the bodies’ material. We derive dissipa-
tive force that acts between particles and express it in terms of particles’ deformation, deformation
rate and material parameters. It differs noticeably from the currently used dissipative force, found
within the quasi-static approximation and does not suffer from inconsistencies of this approxima-
tion. The proposed approach may be used for other continuum mechanics problems where the
bulk dissipation is addressed.
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Introduction. – Granular materials are abundant in
Nature and play an important role in industry. Properties
of these systems are very unusual and depend on the ap-
plied load: for a small load a granular medium behaves as
a solid, for a larger load it flows like a liquid, while at still
larger excitations, a gas-like behavior may be observed.
Such rich behavior is a consequence of the dissipative na-
ture of the interaction forces between particles comprising
a granular system. Therefore, for an adequate description
of granular media, it is crucial to develop a quantitative
model for the dissipative forces at particles’ contacts.

While the elastic component of the inter-particle force
has been known for more than a century from the fa-
mous work of Hertz [1], where a mathematically rigorous
theory has been developed, a rigorous derivation for the
dissipative component is still lacking. The existing phe-
nomenological expressions for the dissipative force used
either linear, e.g. [2,3], or quadratic [4] dependence on
the deformation rate; these, however, do not agree with
the experimental data, e.g. [2,5]. An attempt to obtain
a dissipative force from the basic principles, has been un-
dertaken in [6]; only a limited class of deformations has
been addressed there.

A first complete derivation of the dissipative force
between viscoelastic bodies from the continuum mechanics
equations has been done only recently [7]. In this work a
so-called quasi-static approximation has been introduced.

The functional dependence of the dissipative force on the
deformation and deformation rate, found in ref. [7], has
been already proposed (without any mathematical deriva-
tion) in the earlier work of Kuwabara and Kono [8]. In
later studies [9,10] a flaw in the derivation of the dis-
sipative force in ref. [7] was corrected; still the restric-
tive assumption of the quasi-static approximation was
used [9,10].

In the quasi-static approximation it is assumed that the
displacement field in the deformed material completely co-
incides with that for the static case. That is, an immediate
response of the particles’ material to the external load is
supposed. More precisely, the quasi-static approximation
implies that: i) the characteristic deformation rate is much
smaller than the speed of sound in the system and ii) the
microscopic relaxation time of the particle’s material is
negligibly small as compared to the duration of the im-
pact. The precise definition of the former quantity will be
given below; physically, however, it characterizes the re-
sponse of the material to the applied load. In the present
study we develop a mathematically rigorous perturbative
approach, which allows to go beyond the quasi-static ap-
proximation; we demonstrate that this approximation, al-
though being physically plausible, is not mathematically
complete. This happens because the deviations from the
static deformations, neglected in the quasi-static approxi-
mation, ultimately yield a contribution to the dissipative
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force, comparable to the force itself in this approximation.
The proposed approach may be also used to analyze other
time-dependent impact problems.

Perturbation scheme for the continuum mechan-

ics equation. – To find a force acting between the bodies
in a contact with a given deformation at their surfaces,
one needs to solve continuum mechanics equation for the
stress tensor. Integration of the obtained stress over the
contact area yields the inter-particle force. The contact
mechanics equation, that is, the equation of motion for a
body material, generally reads, e.g. [11],

ρü = ∇ · σ̂ = ∇ ·
(

σ̂el + σ̂v
)

, (1)

where ρ is the material density, u = u(r) is the dis-
placement field in a point r and σ̂ is the stress ten-
sor, comprised of the elastic σ̂el and viscous σ̂v parts.
The elastic stress linearly depends on the strain tensor
uij = 1

2 (∇iuj + ∇jui) [11],

σel
ij (u) = 2E1

(

uij − 1

3
δijull

)

+ E2δijull; (2)

correspondingly, the viscous stress depends on the strain
rate tensor [11]:

σv
ij(u̇) = 2η1

(

u̇ij − 1

3
δij u̇ll

)

+ η2δij u̇ll. (3)

Here E1 = Y
2(1+ν) , E2 = Y

3(1−2ν) , with Y and ν being,

respectively, the Young modulus and Poisson ratio, and
η1 and η2 are, respectively, shear and bulk viscosities of
the bodies’ material; i, j, l denote Cartesian coordinates
and Einstein’s summation rule is applied.

Let us estimate the magnitude of the different terms in
eq. (1). This may be easily done using the dimension-
less units. For the length scale we take R, which corre-
sponds to the characteristic size of colliding bodies, while
for the time scale we use the collision duration τc. Then
v0 = R/τc is the characteristic velocity at the impact.
Taking into account that differentiation with respect to
a coordinate yields for dimensionless quantities the factor
1/R and with respect to time the factor 1/τc, we obtain

∇σv ∼ λ1 ∇σel, λ1 = τrel/τc, (4)

ρü ∼ λ2 ∇σel, λ2 = v2
0/c2. (5)

Here c2 = Y/ρ and τrel = η/Y characterize, respectively,
the speed of sound and the microscopic relaxation time
in the material and η ∼ η1 ∼ η2 [7]. Hence, the term
associated with the viscous stress is smaller by factor λ1

than the one corresponding to the elastic stress, while the
term associated with the inertial effects is smaller by the
factor λ2.

Neglecting terms, of the order of λ1 and λ2, that is, the
terms ∇σv and ρü, eq. (1) simplifies to

∇ · σ̂el(u) = 0, (6)

R

x

z

2a

Fig. 1: (Colour on-line) Collision of a visco-elastic sphere of
radius R with undeformable plane. Here a is the radius of the
contact zone and ξ is the deformation. The contact plane is
located at z = 0.

which yields the static displacement field u = u(r). This
approximation corresponds to the quasi-static approxima-
tion, used in the literature [7,9,10,12,13]. Neglecting terms
of the order λ2 but keeping terms of the order of λ1 yields

∇ · σ̂ = ∇ ·
(

σ̂el(u) + σ̂v(u̇)
)

= 0. (7)

Physically, the above equation describes the over-damped
motion of a material when the inertial effects, proportional
to λ2, are negligible; the excitation of elastic waves in this
case may be ignored. Such conditions are important for
many applications, especially for slow collisions.

To go beyond the quasi-static approximation one has to
solve eq. (7) which contains both the displacement field
u as well as its time derivative, u̇. Equation (7) needs
to be supplemented by the boundary conditions. These
correspond to vanishing stress on the free surface of the
bodies and given displacement u at the contact area. For
simplicity we consider here a collision of a sphere of ra-
dius R with a hard undeformable plane located at z = 0,
fig. 1. The generalization for a contact of two arbitrary
convex bodies of different materials is straightforward, but
leads to cumbersome notations; it will be addressed else-
where [14]. Let ξ = R − zO be the deformation, where
zO is the z-coordinate of the center of mass of the sphere,
then the z-component of the displacement on the contact
plane reads for small deformations [11]

uz(x, y) = ξ − 1

2R
(x2 + y2). (8)

In a vast majority of applications λ1 = τrel/τc ≪ 1, which
implies that the viscous stress is small as compared to the
elastic stress. This allows to solve eq. (7) perturbatively,
as a series in a small parameter λ1 ∝ η. Here we follow
the standard perturbation scheme, e.g. [15]: To notify the
order of different terms, we introduce a “technical” small
parameter λ, which at the end of computations is to be
taken as unity. Hence one can write

u(r) = u(0)(r) + λu(1)(r) + λ2u(2)(r) + . . . (9)

and
σ̂ = σ̂el + λσ̂v. (10)
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Substituting eqs. (9) and (10) into eq. (7) and collecting
terms of the same order in λ yields a hierarchic set of
equations. The zero-order equation reads

∇ · σ̂el
(

u(0)
)

= 0, (11)

u(0)
z

∣

∣

∣

z=0
= ξ − 1

2R
(x2 + y2).

The first-order (that is, proportional to λ) equation is

∇ ·
(

σ̂el(u(1)) + σ̂v(u̇(0))
)

= 0, (12)

u(1)
z

∣

∣

∣

z=0
= 0,

and so on, where the expressions for σ̂el and σ̂v are given
by eqs. (2) and (3). In all these equations the stress
tensor vanishes on the free surface. Note that in the
proposed perturbation scheme, only the zero-order equa-
tion (11) has non-zero boundary conditions, corresponding
to the boundary conditions (8) of the initial problem;
all other high-order perturbation equations have homoge-
neous boundary conditions. Such partition of the bound-
ary conditions is justified due to the linearity of the
problem.

The zero-order solution u(0) of eq. (11) of the above
perturbative approach is to be substituted into eq. (12)
to find the first-order solution u(1), which may be further
used to obtain u(2) from the second-order equation, etc.
Hence the series

σ̂ = σ̂(0) + λσ̂(1) + λ2σ̂(2) + . . . (13)

is generated, where σ̂(0) = σ̂el (0) = σ̂el
(

u(0)
)

is the zero-

order term, σ̂el (1) = σ̂el
(

u(1)
)

and σ̂v (1) = σ̂v
(

u̇(0)
)

are

the first-order terms, σ̂el (2) = σ̂el
(

u(2)
)

is the second-
order term with respect to λ1 ∝ η, etc.

Zero-order solution. Hertz theory. – To illustrate
the approach we start with the zero-order equation (11). It
corresponds to the quasi-static approximation (6), which
solution is known. In the above notations eq. (11) reads

∇jσ
el (0)
ij = E1Δu

(0)
i +

(

E2 +
1

3
E1

)

∇i∇ju
(0)
j = 0. (14)

To solve eq. (14) we use the approach of ref. [11] and write
the solution as

u(0) = f (0)ez + ∇ϕ(0), (15)

where ϕ(0) = K(0)zf (0)+ψ(0), K(0) is some constant to be
found and f (0) and ψ(0) are unknown harmonic functions
(Δf (0) = 0 and Δψ(0) = 0). We assume the lack of tan-
gential stress at the interface, which is, e.g., fulfilled when
the bodies at contact are of the same material. Physi-
cally, the substitute (15) is dictated by the symmetry of
the problem: The main displacement of the material oc-
curs along z-axes. Taking into account that

Δu(0) = Δ∇ϕ(0) = 2K(0)∇∂f (0)

∂z
(16)

and

∇ · u(0) = (1 + 2K(0))
∂f (0)

∂z
, (17)

as follows from eq. (15), we recast eq. (14) into the form

∇jσ
el(0)
ij =

[

2E1K
(0)

+ (1 + 2K(0))

(

E2 +
E1

3

)]

∇i
∂f (0)

∂z
= 0, (18)

which implies (for non-zero f (0)) that

K(0) = −1

2

3E2 + E1

3E2 + 4E1
. (19)

Consider now the boundary condition for the stress tensor.
Obviously, on the free boundary all components of the
stress vanish. In the contact region, located at the surface,
z = 0, the tangential components of the stress tensor σzx

and σzy vanish as well, while the normal component of the
stress tensor equals (up to the sign) the normal component

of the external pressure P
(0)
z , e.g. [11]

σel(0)
zx

∣

∣

∣

z=0
=0; σel(0)

zy

∣

∣

∣

z=0
=0; σel(0)

zz

∣

∣

∣

z=0
=−P (0)

z .

(20)
Using eq. (2) for the elastic part of the stress tensor, to-
gether with the displacement vector (15) we recast the
boundary conditions (20) into the form

∂

∂x

(

3E1

4E1 + 3E2
f (0)+2

∂ψ

∂z

)
∣

∣

∣

∣

z=0

= 0, (21)

∂

∂y

(

3E1

4E1 + 3E2
f (0)+2

∂ψ

∂z

)∣

∣

∣

∣

z=0

= 0, (22)

∂

∂z

(

3E1

4E1 + 3E2
f (0)+2

∂ψ

∂z

)∣

∣

∣

∣

z=0

=−P
(0)
z

E1
. (23)

From eqs. (21) and (22) there follows the relation between
f (0) and ∂ψ

∂z at z = 0:

(

∂ψ

∂z
+

3

2

E1

4E1 + 3E2
f (0)

)∣

∣

∣

∣

z=0

= const = 0. (24)

The constant in the above relation equals zero, since it
holds true independently of the coordinate that is, also
at infinity; at infinity, however, the deformation and thus
the above functions vanish. Since f (0), ψ and ∂ψ/∂z are
harmonic functions, the condition that their linear com-
bination vanishes on the boundary, eq. (24), implies that
this combination is zero in the total domain, that is,

∂ψ

∂z
= −3

2

E1

4E1 + 3E2
f (0). (25)

Substituting the last relation into (23) yields

∂f (0)

∂z

∣

∣

∣

∣

z=0

= − 4E1 + 3E2

E1(E1 + 3E2)
P (0)

z . (26)
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Since f (0) is a harmonic function, one can use the relation
between the normal derivative of a harmonic function on
a surface and its value in the bulk, as follows from the
theory of harmonic functions (see, e.g., [11,16]), hence we
find

f (0)(r) =
4E1 + 3E2

2πE1(E1 + 3E2)

∫∫

S

P
(0)
z (x′, y′) dx′dy′

|r − r′| , (27)

where S is the contact area.
Using eq. (15) we can write the z-component of the zero-

order displacement at z = 0 as

u(0)
z

∣

∣

∣

z=0
= (1 + K(0)) f (0)

∣

∣

∣

z=0
+

∂ψ

∂z

∣

∣

∣

∣

z=0

,

which together with (25) and the definition of K(0)

(eq. (19)) yields

u(0)
z

∣

∣

∣

z=0
=

1

2
f (0)

∣

∣

∣

z=0
. (28)

If we now express E1 and E2 in terms of ν and Y , we
obtain from eqs. (28), (27) and (20)

u(0)
z

∣

∣

∣

z=0
= − (1 − ν2)

πY

∫∫

S

σ
el(0)
zz (x′, y′, z = 0) dx′dy′

|r − r′| .

(29)
Equation (29) is a standard relation of the static contin-
uum theory, e.g. [11]. Physically it relates the distribution
of the normal displacement and normal stress at the con-
tact zone. The distribution of the normal pressure there
follows from the Hertz theory (see, e.g., [11]):

−σel(0)
zz

∣

∣

∣

z=0
= P (0)

z =
2Y

πR(1 − ν2)

√

a2 − (x2 + y2), (30)

where a is the radius of the contact circle. Substituting
eq. (30) into (29) and performing integration over the con-
tact zone we obtain, as expected, the displacement (8).

Moreover, since ξ = u
(0)
z (x = 0, y = 0)

∣

∣

∣

z=0
, we find the

relation between deformation and the radius of the con-
tact circle, ξ = a2/R. Integrating the stress (30) over the
contact we obtain the elastic Hertzian force, e.g. [11]:

FH = F el(0)
z = Bξ3/2, B =

4Y
√

R

3(1 − ν2)
. (31)

Obviously, the zero-order terms refer to the static case
and do not describe dissipation. As follows from the
above discussion (see eq. (12)) there are two first-order

terms, σ̂v(u̇(0)) = σ̂v (1) and σ̂el
(

u(1)
)

= σ̂el (1). The
former one depends on the known zero-order solutions
u(0)(r) and hence may be related to the zero-order stress
σ̂el(0) = σ̂el(u(0)) as

σ
v(1)
ij =

η1

E1
σ̇

el(0)
ij +

(

η2 − η1
E2

E1

)

(1 + 2K(0))
∂ḟ (0)

∂z
δij ,

(32)

where we use eqs. (2), (3) and (17). If we now apply
eq. (26) for ∂f (0)/∂z and eq. (19) for the constant K(0),
we find the zz-component of this tensor at the contact
plane, z = 0:

σv(1)
zz (x, y, 0) = α0σ̇

el(0)
zz (x, y, 0), (33)

α0 =
3η2 + η1

3E2 + E1
=

(2 + 2ν)(1 − 2ν)(3η2 + η1)

3Y
,

where the definitions of E1 and E2 have been used.
The other first-order term, σ̂el

(

u(1)
)

= σ̂el (1) depends

on the first-order displacement u(1)(r) which is still to be
found. Neglecting this term and keeping only one first-
order term (33) corresponds to the quasi-static approxi-
mation for the dissipative force [7] discussed above. The
expression for α0 coincides with the result of [9,10], where
the necessary corrections have been implemented.

First-order solution. Beyond the quasi-static

approximation. – Turn now to the first-order equa-
tion (12), which is actually an equation for the function
u(1) that describes the deviations of the displacement from
the static case. We write this equation as

∇jσ
el(1)
ij = −∇jσ

v(1)
ij , (34)

where the left-hand side contains the unknown function
u(1), while the right-hand side depends on u(0) and is
therefore known. Using eqs. (16), (17) and eq. (19) for
K(0) we obtain for the r.h.s. of eq. (34)

∇jσ
v(1)
ij =

[

2η1K
(0) + (1 + 2K(0))

(

η2 +
η1

3

)]

∇i
∂ḟ (0)

∂z

=
3(E1η2 − E2η1)

(4E1 + 3E2)
∇i

∂ḟ (0)

∂z
. (35)

To proceed with the solution of eq. (34) for u(1) we reduce
it to the solution of two simpler equations. Namely, due to
the linearity of the problem, one can represent the first-
order displacement field as a sum of two parts, u(1) =
ū(1)+ũ(1), which correspond to the two parts of the elastic

stress tensor, σ
el(1)
ij = σ̃

el(1)
ij + σ̄

el(1)
ij . Here the first part of

σ
el(1)
ij is the solution of the inhomogeneous equation with

homogeneous boundary conditions:

∇j σ̃
el(1)
ij = −∇jσ

v(1)
ij , (36)

σ̃el(1)
xz

∣

∣

∣

z=0
= σ̃el(1)

yz

∣

∣

∣

z=0
= σ̃el(1)

zz

∣

∣

∣

z=0
= 0, (37)

while the second part is the solution of the homogeneous

equation with the given boundary conditions for the dis-

placement ū
(1)
z at the contact plane:

∇j σ̄
el(1)
ij = 0, (38)

ū(1)
z = u(1)

z − ũ(1)
z = −ũ(1)

z .

Here we use the boundary conditions (12), that is,

u
(1)
z

∣

∣

∣

z=0
= 0. The boundary problem (38) is exactly the
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same as the above problem (11) for the zero-order func-
tions. Hence the same relation (29) holds true for the
first-order functions, that is,

ū(1)
z

∣

∣

∣

z=0
= − (1 − ν2)

πY

∫∫

S

σ̄
el(1)
zz (x′, y′, z = 0) dx′dy′

|r − r′| .

(39)

To solve eq. (36) we write the displacement field ũ(1) in
a form similar to this for the zero-order solution (15):

ũ(1) = f (1)ez + ∇ϕ(1), (40)

where ϕ(1) = K(1)zf (1) + ψ(1), K(1) is some constant and
f (1) and ψ(1) are harmonic functions. Then we can write

the first-order elastic stress tensor σ̃
el(1)
ij as

σ̃
el(1)
ij = (1 + 2K(1))

[

E1(δjz∇if
(1) + δiz∇jf

(1))

+

(

E2 − 2

3
E1

)

∂f (1)

∂z
δij

]

+ 2E1K
(1)z∇i∇jf

(1)

+ 2E1∇i∇jψ
(1). (41)

Choosing K(1) = − 1
2 the above stress tensor simplifies to

σ̃
el(1)
ij = −zE1∇i∇jf

(1) + 2E1∇i∇jψ
(1) (42)

and the boundary conditions (37) read

σ̃el(1)
xz

∣

∣

∣

z=0
=

∂

∂x

(

∂ψ(1)

∂z

)∣

∣

∣

∣

z=0

= 0, (43)

σ̃e(1)
yz

∣

∣

∣

z=0
=

∂

∂y

(

∂ψ(1)

∂z

)∣

∣

∣

∣

z=0

= 0. (44)

Therefore, we conclude that

∂ψ(1)

∂z

∣

∣

∣

∣

z=0

= const = 0, (45)

where the last relation follows from the condition that ψ(1)

vanishes at infinity, x, y → ∞, where the deformation is
zero. Since ψ(1) is a harmonic function, we conclude that
the vanishing normal derivative on the boundary, eq. (45),
implies that this function vanishes everywhere, that is,
ψ(1)(x, y, z) ≡ 0 (see, e.g., [16]). Hence

σ̃
el(1)
ij = −E1z∇i∇jf

(1) (46)

and the third boundary condition in eq. (37), σ̃
el(1)
zz = 0 at

z = 0, is automatically fulfilled. Taking into account that
the function f (1) is harmonic, we obtain

∇j σ̃
el(1)
ij = −E1∇i

∂f (1)

∂z
. (47)

Substituting the above relation for ∇j σ̃
el(1)
ij and eq. (35)

for ∇jσ
v(1)
ij into eq. (36), we recast this equation into the

form

E1∇i
∂f (1)

∂z
= −3(E2η1 − E1η2)

(4E1 + 3E2)
∇i

∂ḟ (0)

∂z

which implies the relation between functions f (1) and ḟ (0):

f (1) = −α1ḟ
(0), (48)

α1 =
3(E2η1 − E1η2)

E1(3E2 + 4E1)
=

(1+ν)(1−2ν)

(1 − ν)Y

[

2+2ν

3−6ν
η1 − η2

]

.

The function f (1) may be now exploited to express the

displacement ũ
(1)
z on the contact plane. Using eq. (40)

with K(1) = − 1
2 we write for ũ

(1)
z

ũ(1)
z =

1

2
f (1) − z

2

∂f (1)

∂z
; (49)

substituting there f (1) from eq. (48) we arrive at

ũ(1)
z = −1

2
α1

(

ḟ (0) − z
∂ḟ (0)

∂z

)

, (50)

where f (0) is given by eq. (27). Thus, the above relation

presents the solution for the displacement ũ
(1)
z . For the

contact plane z = 0 it yields the boundary condition for
eq. (38):

ū(1)
z

∣

∣

∣

z=0
= − ũ(1)

z

∣

∣

∣

z=0
=

1

2
α1ḟ

(0)

∣

∣

∣

∣

z=0

. (51)

Taking into account that 1
2 ḟ (0)

∣

∣

∣

z=0
= u̇

(0)
z

∣

∣

∣

z=0
, according

to eq. (28), we obtain, expressing u̇
(0)
z in terms of σ̇

el(0)
zz ,

as follows from eq. (29),

ū(1)
z

∣

∣

∣

z=0
= − (1 − ν2)

πY

∫∫

S

α1σ̇
el(0)
zz (x′, y′, z = 0) dx′dy′

|r − r′| .

(52)
Comparing then eqs. (39) and (52) we conclude that the

first-order stress tensor σ̄
el(1)
zz at the contact plane reads

σ̄el(1)
zz

∣

∣

∣

z=0
= α1σ̇

el(0)
zz

∣

∣

∣

z=0
. (53)

Finally we obtain for the total first-order stress tensor σ
(1)
zz :

σ(1)
zz

∣

∣

∣

z=0
=

(

σ̄el(1)
zz + σ̃el(1)

zz + σv(1)
zz

)∣

∣

∣

z=0

= (α0 + α1)σ̇
el(0)
zz

∣

∣

∣

z=0
, (54)

where we use eqs. (33) and (53) and take into account that

σ̃
el(1)
zz = 0 on the contact plane (see eq. (37)).

The dissipative force. – The elastic inter-particles
force refers to the zero-order term in the perturbation ex-
pansion (13), while the remaining terms quantify dissipa-
tion. Hence, in the linear with respect to the dissipative
constants approximation, the total dissipative force reads

F v(1)
z =

∫∫

S

σ(1)
zz (x, y)|z=0 dxdy ,
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so that eq. (54) yields

F v(1)
z =A

∂

∂t

∫∫

S

σel(0)
zz (x, y)|z=0 dxdy = AḞ el(0)

z , (55)

A = α0 + α1,

where F
el(0)
z is the normal force corresponding to the elas-

tic reaction of the medium. It is equal to the Hertzian
force, eq. (31). Using the expressions (33) and (48) for α0

and α1 and eq. (31) for the Hertzian force, we arrive at
the final result for the dissipative force:

F v(1)
z =

3

2
AB

√

ξξ̇, (56)

A =
1

Y

1 + ν

1 − ν

[

4

3
η1(1 − ν + ν2) + η2(1 − 2ν)2

]

.

Here the constant B depends on the geometry of the col-
liding bodies and their material properties; for the simple
case of a collision of a sphere with a hard plane, it is given
by eq. (31). For a collision of two spheres of radii R1 and
R2 of the same material it reads [7,11]

B =
2Y

3(1 − ν2)

√

Reff, Reff =
R1R2

R1 + R2
.

Generally, B depends on the local curvatures of the bodies
at contact, e.g. [7,11,14]. Although the derivation has been
illustrated for the simple case, it remains valid for the
bodies of any convex shapes and different materials [14].

Note that the new result (56) for the dissipative force
has been obtained by a rigorous perturbation approach.
It contains all first-order terms with respect to the small
parameter λ1, proportional to the material viscosities η1/2

which guarantees the physical consistency of the theory.
On the contrary, the previous result, based on the quasi-
static approximation suffers from the incomplete account
of the first-order stress terms. Indeed, this approximation
takes into account σ̂v(1) but ignores σ̂el(1). Physically,
σ̂v(1) is the component of the stress associated with the
strain rate (i.e. with the relative motion of different parts
of the material) and thus has a “purely dissipative” na-
ture. This stress causes an additional strain in the bulk,
and the respective displacement field u(1)(r) which gives
rise to the excess elastic stress σ̂el(1); both first-order stress
terms are of the same order of magnitude as follows from
eqs. (33), (53) and (48). Hence the quasi-static approxima-
tion is not generally valid. It manifests its inconsistency
for the case of ν = 1/2, which corresponds to materi-
als with very small elastic shear module (like rubber).
Although this approximation predicts vanishing dissipa-
tion in such materials, there are no physical mechanisms
that could assure the energy conservation. At the same
time, our new theory is free from such inconsistencies.

Conclusion. – We develop a mathematically rigorous
method to describe the dissipative force acting between
viscoelastic bodies during a collision. It is based on a

perturbation scheme, applied to the over-damped con-
tinuum mechanics equation, with the inertial effects ne-
glected. We use the small parameter, which is the ratio of
microscopic relaxation time and the characteristic time of
a collision and is proportional to the dissipative constants
of the material. Applying the perturbation approach we
obtain the dissipative force, linear with respect to this
small parameter. The presented method is rather general
and may be further developed to take into account the
inertial effects as well as the high-order corrections with
respect to the small parameter. The obtained dissipation
force is expressed in terms of the time derivative of the
elastic force, as follows from the Hertz theory, and elastic
and viscous material constants. It noticeably differs from
the one obtained previously within the quasi-static ap-
proximation and demonstrates physically correct behav-
ior for the whole range of material parameters. Finally,
we wish to stress that the proposed approach may be also
applied for similar continuum mechanics problems, where
dissipation in a bulk due to the strain rate is addressed.
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