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Abstract. We report a new theory of dissipative forces acting between colliding viscoelastic bodies. The
impact velocity is assumed not to be large to neglect plastic deformations in the material and propagation
of sound waves. We consider the general case of bodies of an arbitrary convex shape and of different
materials. We develop a mathematically rigorous perturbation scheme to solve the continuum mechanics
equations that deal with both displacement and displacement rate fields and accounts for the dissipation
in the bulk of the material. The perturbative solution of these equations allows to go beyond the previously
used quasi-static approximation and obtain the dissipative force. The derived force does not suffer from
the inconsistencies of the quasi-static approximation, like the violation of the third Newton’s law for the
case of different materials, and depends on particle deformation and deformation rate.

1 Introduction

Granular materials are abundant in nature; they range
from sand and powders on Earth to planetary rings and
dust clouds in outer space [1–5]. These material exhibit
very unusual properties, demonstrating solid-like, liquid-
like or gas-like [6–9] behavior, depending on the exter-
nal load or magnitude of agitation [10–12]. The physical
reason for many unusual phenomena in granular media
is the nature of inter-particles interactions there. Con-
trary to molecular or atomic systems, where particles in-
teract only trough conservative, elastic forces, the interac-
tion between granular particles include dissipative forces.
This happens because the grains are themselves macro-
scopic bodies, which contain macroscopically large num-
ber of microscopic degrees of freedom. Hence, during an
impact of such bodies their mechanical energy, associated
with the translational or rotational motion, or with the
elastic deformation of the particles’ material, is partly
transformed into the internal degrees of freedom, that
is, into heat. In many applications however, the temper-
ature increase of the grains is insignificant and may be
neglected [6]. Obviously, for an adequate description of
granular media one needs a quantitative model of inter-
particles forces, which includes both elastic and dissipative
components.

a e-mail: nb144@le.ac.uk

The elastic part of the inter-particle force is known for
more than a century from the famous work of Hetrz [13].
He derived a mathematically rigorous result for the force
acting between elastic bodies at a contact, provided the
deformation of the bodies is small as compared to their
size. In spite of a large importance for applications, a rig-
orous derivation of the dissipative force is still lacking.
The existing phenomenological expressions for the dissi-
pative force use either linear, e.g. [14,15] or quadratic [16]
dependence of the force on the deformation rate. Neither
of these dependencies is consistent with the experimental
data, e.g. [14,17]. A derivation of the dissipative force from
the first-principles has been undertaken in ref. [18]. A very
restrictive approximation used in this work —the assump-
tion that only shear deformations are important, substan-
tially limits its applicability. A first “complete” derivation
of the dissipative force between viscoelastic bodies has
been done only recently [19]. It was based on the contin-
uum mechanics equations and exploited a quasi-static ap-
proximation. It is assumed in this approximation that the
displacement field in the bulk of colliding bodies coincides
with that of a static contact [19]. The correct functional
dependence of the dissipative force, derived in ref. [19] has
been already suggested (without any rigorous mathematic
derivation) in the earlier work of Kuwabara and Kono [20].
In the later studies [21, 22] a flaw in the derivation of the
dissipative force of ref. [19] has been corrected. Still the
restrictive assumption of the quasi-static approximation
was used [21,22].
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Physically, the quasi-static approximation assumes the
immediate response of the particle’s material to the ex-
ternal load. Two conditions are to be fulfilled in order to
make this approximation valid: i) the characteristic de-
formation rate should be much smaller than the speed of
sound in the system and ii) microscopic relaxation time
of the particle’s material should be much shorter than the
duration of the impact. The microscopic relaxation time
quantifies the time needed for the material of a deformed
body to respond to the applied load; in what follows we
will give the detailed definition of this quantity. To go be-
yond the quasi-static approximation, that is, to take into
account the deviation of the displacement field in the bulk
of a deformed body from the static displacement field, we
develop a perturbation approach based on a small param-
eter —the ratio of microscopic relaxation time and colli-
sion duration. In the most of applications this ratio is in-
deed small. Hence, we rigorously derive for the first time
a dissipative force acting between viscoelastic particles.
Although the quasi-static approximation is based on the
physically plausible approach, it possesses some inconsis-
tency, which is not so obvious for a collision of particles
of the same material. At the same time when particles
of different materials suffer an impact, the latter approx-
imation predicts non-equal dissipative forces between the
bodies; this violates the third Newton’s law. Another in-
consistency is related to the dependence of the dissipa-
tive force on the Poisson ratio —within the quasi-static
approximation one obtains vanishing dissipative force for
the materials with the Poisson ratio close to 1/2, which
corresponds to much larger bulk modulus as compared to
the shear one; this is definitely not physical. These diffi-
culties of the quasi-static approximation are discussed in
detail below.

Our new theory, based on the perturbation scheme, is
mathematically rigorous and the obtained dissipative force
is free from the above inconsistencies. In the present work
we analyze a general case of an impact of viscoelastic bod-
ies of an arbitrary shape and of different materials. The
results for a more simple case of a collision of a sphere with
un-deformable plane, which allows less involved derivation
technique, has been reported earlier [23].

The rest of the paper is organized as follows. In the
next sect. 2 we introduce the equation of motion of vis-
coelastic medium which we solve for the case of interest in
the next sections. In sect. 3 the solution for the static
contact is discussed; here we illustrate the general ap-
proach and derive the classical Hertz law. In sect. 4 the
dynamic contact is addressed. We elaborate the pertur-
bation scheme and using this scheme derive in sect. 5 the
next-order solution. In sect. 6 we present our new the-
ory for the dissipative force between colliding viscoelastic
bodies. Finally, in sect. 7, we summarize our findings.

2 Equation of motion for viscoelastic medium

When two viscoelastic bodies are brought in a contact, so
that they are deformed, an interaction force between the
bodies arises. Generally, it contains the elastic and viscous

parts; for a static contact, however, only the elastic force
appears. To compute the forces, one needs to find a stress
that emerges in the bodies and integrate the stress over the
contact zone. The distribution of stress in the material is
governed by the equation for a continuum medium which
reads, see e.g. [24],

ρü = ∇ · σ̂ = ∇ ·
(

σ̂el + σ̂v
)

. (1)

Here ρ is the material density, u = u(r) is the displace-
ment field in a point r and σ̂ is the stress tensor, comprised
of the elastic σ̂el and viscous part σ̂v. The elastic stress
linearly depends on the strain tensor,

uij =
1

2
(∇iuj + ∇jui) ,

and has the following form [24]:

σel
ij(u) = 2E1

(

uij −
1

3
δijull

)

+ E2δijull. (2)

Similarly, the viscous stress linearly depends on the strain
rate tensor [24]:

σv
ij(u̇) = 2η1

(

u̇ij −
1

3
δij u̇ll

)

+ η2δij u̇ll. (3)

Here E1 = Y
2(1+ν) and E2 = Y

3(1−2ν) , with Y and ν being,

respectively the Young modulus and Poisson ratio of the
body material. η1 and η2 are the viscosity coefficients for
the shear and bulk viscosity and i, j, l denote Cartesian
coordinates; the Einstein’s summation rule is applied.

The elastic deformation implies that, after separation
of the contacting particles, they completely recover their
initial form so that no plastic deformation remains. Only
such deformations will be addressed below.

3 Static contact: Hertz theory

To introduce the notations and illustrate the derivation
method we start with the static case, that is, we con-
sider a time-independent contact of two convex bodies.
We assume that only normal forces with respect to the
contact area act between the particles. We place the co-
ordinate system in the center of the contact region, where
x = y = z = 0 (fig. 1). Let the displacement field in the
upper body, located at z > 0, be u(r), while in the lower
body, located at z < 0 be w(r). Then the deformation
ξ which is equal to the sum of the compressions of the
both bodies in the center of the contact zone is related
to the z-components of the displacements of the upper
and lower bodies’ surfaces at the contact plane uz(x, y, 0)
and wz(x, y, 0), see fig. 1. It may be shown [24] that for
the bodies of arbitrary shape the following relation holds
true:

B1x
2 + B2y

2 + uz(x, y, 0) + wz(x, y, 0) = ξ, (4)
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Fig. 1. Illustrates a simple case of a collision of two visco-
elastic spheres in the according coordinate frame (the dashed
profiles show undeformed bodies). Note that in the text a gen-
eral case of arbitrary convex bodies is addressed.

where the constants B1 and B2 are related to the radii of
curvature of the bodies’ surfaces near the contact [24],

2 (B1 + B2) =
1

R1
+

1

R2
+

1

R′

1

+
1

R′

2

, (5)

4 (B1 − B2)
2

=

(

1

R1
− 1

R2

)2

+

(

1

R′

1

− 1

R′

2

)2

+2 cos 2ϕ

(

1

R1
− 1

R2

)(

1

R′

1

− 1

R′

2

)

.

(6)

Here R1, R2 and R′

1, R′

2 are respectively the principal
radii of curvature of the first and the second body at the
point of contact and ϕ is the angle between the planes
corresponding to the curvature radii R1 and R′

1. Equa-
tions (4)–(6) describe the general case of the contact be-
tween two smooth bodies (see [24] for details). The phys-
ical meaning of (4) is easy to see for the case of a contact
of a soft sphere of a radius R (R1 = R2 = R) with a
hard, undeformed plane (R′

1 = R′

2 = ∞). In this case
B1 = B2 = 1/2R, the compressions of the sphere and
of the plane are respectively uz(0, 0, 0) = ξ and wz = 0,
and the surface of the sphere before the deformation is
given by z(x, y) = 1

2R (x2 + y2) for small z. Then the rela-
tion (4) may be recast in the flattened area into the form,
uz(x, y) = ξ − z(x, y), which is the condition for a point
z(x, y) on the body’s surface to touch the plane z = 0.

While eq. (4) defines the displacement on the contact
surface, the displacement fields in the bulk of the first
(upper) and second (lower) bodies are determined by the
following equations:

∇ · σ̂el(u) = 0, ∇ · σ̂el(w) = 0. (7)

Both equations may be solved by the same approach,
therefore in what follows we consider the solution for the
upper body with z > 0. Using eq. (2) which relates the
stress and strain tensors, we write

∇jσ
el
ij = E1∆ui +

(

E2 +
1

3
E1

)

∇i∇juj = 0, (8)

where the elastic constants refer to the upper body (for
the notation simplicity we do not add now the additional
index specifying the body —it will be done later).

To solve the above equation we use the approach of [24]
and write the solution as

u = f (0)
ez + ∇ϕ(0). (9)

Here ϕ(0) = K(0)zf (0) +ψ(0), where K(0) is some constant
to be found and f (0) and ψ(0) are unknown harmonic func-
tions. We assume the lack of tangential stress at the in-
terface, which is e.g. fulfilled when the bodies at a contact
are of the same material. Taking into account that

∆u = ∆∇ϕ(0) = 2K(0)∇∂f (0)

∂z
(10)

and

∇ · u = (1 + 2K(0))
∂f (0)

∂z
, (11)

we recast eq. (8) into the following form:

∇jσ
el
ij =

[

2E1K
(0) +

(

1 + 2K(0)
)

(

E2 +
E1

3

)]

∇i
∂f (0)

∂z
= 0,

(12)

which implies that

K(0) = −1

2

3E2 + E1

3E2 + 4E1
. (13)

Consider now the boundary condition for the stress tensor.
Obviously, on the free boundary all components of the
stress vanish. In the contact region, located at the surface,
z = 0, the tangential components of the stress tensor σel

zx

and σel
zy vanish as well, while the normal component of the

stress tensor reads

n · σ̂el = −σel
zz = Pz, (14)

where n = (0, 0,−1) is the external normal to the upper
body on the contact plane and Pz is the normal pressure
acting on the contact surface. Therefore the boundary con-
ditions have the following form:

σel
zx

∣

∣

z=0
= 0; σel

zy

∣

∣

z=0
= 0; σel

zz

∣

∣

z=0
= −Pz.

(15)



Page 4 of 9 Eur. Phys. J. E (2015) 38: 55

Using the expression (2) for the elastic part of the stress
tensor, together with the displacement vector (9) we recast
the boundary conditions (15) into the form:

∂

∂x

(

3E1

4E1 + 3E2
f (0) + 2

∂ψ

∂z

)∣

∣

∣

∣

z=0

= 0, (16)

∂

∂y

(

3E1

4E1 + 3E2
f (0) + 2

∂ψ

∂z

)∣

∣

∣

∣

z=0

= 0, (17)

∂

∂z

(

3E1

4E1 + 3E2
f (0) + 2

∂ψ

∂z

)
∣

∣

∣

∣

z=0

= −Pz

E1
. (18)

From equations (16) and (17) follows the relation between

f (0) and ∂ψ
∂z at z = 0:

(

∂ψ

∂z
+

3

2

E1

4E1 + 3E2
f (0)

)∣

∣

∣

∣

z=0

= const = 0. (19)

The constant in the above relation equals to zero, since it
holds true independently on the coordinate that is, also at
the infinity; at the infinity, however, the deformation and
thus the above functions vanish. Since f (0), ψ as well as
∂ψ/∂z are the harmonic functions, the condition that their
linear combination vanishes on the boundary, eq. (19), im-
plies that it is zero in the total domain, that is,

∂ψ

∂z
= −3

2

E1

4E1 + 3E2
f (0). (20)

Substituting the last relation into (18) yields

∂f (0)

∂z

∣

∣

∣

∣

z=0

= − 4E1 + 3E2

E1(E1 + 3E2)
Pz. (21)

Since f (0) is a harmonic function, one can use the relation
between the normal derivative of a harmonic function on
the surface and its value in the bulk, as it follows from the
theory of harmonic functions (see e.g. [24, 25]), hence we
find

f (0)(r) =
4E1 + 3E2

2πE1(E1 + 3E2)

∫∫

S

Pz(x
′, y′) dx′ dy′

|r − r′| ,

(22)
where S is the contact area. Using eq. (9) we can write
z-component of the zero-order displacement at z = 0 as

uz|z=0 = (1 + K(0))f (0)
∣

∣

∣

z=0
+

∂ψ

∂z

∣

∣

∣

∣

z=0

,

which together with (20) and definition of K(0), eq. (13)
yields,

uz|z=0 =
1

2
f (0)

∣

∣

∣

z=0
. (23)

If we now express E1 and E2 in terms of ν1 and Y1, where
ν1 and Y1 are the according constants for the upper body
(recall that we consider the upper contacting body) one
obtains from eqs. (23), (22) and (15):

uz(x, y, z = 0) = − (1 − ν2
1)

πY1

∫∫

S

σel
zz(x

′, y′, z=0) dx′ dy′

|r − r′| .

(24)

The same considerations may be performed for the lower
body. Taking into account that the external normals for
the upper and lower bodies as well as the exerted pressures
are equal up to a minus sign (n = nup = −nlow, Pz =
Pz,up = −Pz,low), we obtain,

wz(x, y, z = 0) = − (1 − ν2
2)

πY2

∫∫

S

σel
zz(x

′, y′, z=0) dx′ dy′

|r − r′| .

(25)
Hence, with eqs. (24) and (25) the relation (4) takes the
form

1

π

(

1 − ν2
1

Y1
+

1 − ν2
2

Y2

)
∫∫

S

Pz(x
′, y′)

|r − r′| dx′ dy′ =

ξ − B1x
2 − B2y

2, (26)

The last equation is an integral equation for the unknown
function Pz(x, y). We compare this equation with the
mathematical identity [24],

∫∫

S

dx′ dy′

|r − r′|

√

1 − x′ 2

a2
− y′ 2

b2
=

πab

2

∫

∞

0

[

1− x2

a2 + t
− y2

b2 + t

]

dt
√

(a2 + t)(b2 + t)t
, (27)

where the integration in the left-hand side (l.h.s.) is per-
formed over the elliptical area x′ 2/a2 + y′ 2/b2 ≤ 1. The
l.h.s. of both eqs. (26) and (27), contain integrals of the
same type, while the r.h.s. contain quadratic forms of the
same type. Therefore, the contact area is an ellipse with
the semi-axes a and b and the pressure is of the form

Pz(x, y) = const

√

1 − x2

a2
− y2

b2
.

The constant here may be found from the total elastic
force Fel acting between the bodies. Integrating Pz(x, y)
over the contact area we get Fel, which then yields the
constant. Hence we obtain

Pz(x, y) =
3Fel

2πab

√

1 − x2

a2
− y2

b2
. (28)

We substitute (28) into (26) and replace the double in-
tegration over the contact area by integration over the
variable t, according to the above identity. Thus, we ob-
tain an equation containing terms proportional to x2, y2

and a constant. Equating the corresponding coefficients
we obtain

ξ =
FelD

π

∫

∞

0

dt
√

(a2 + t)(b2 + t)t
=

FelD

π

N(ζ)

b
, (29)

B1 =
FelD

π

∫

∞

0

dt

(a2 + t)
√

(a2 + t)(b2 + t)t

=
FelD

π

M(ζ)

a2b
, (30)

B2 =
FelD

π

∫

∞

0

dt

(b2 + t)
√

(a2 + t)(b2 + t)t

=
FelD

π

M(1/ζ)

ab2
, (31)
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where

D ≡ 3

4

(

1 − ν2
1

Y1
+

1 − ν2
2

Y2

)

(32)

and ζ ≡ a2/b2 is the ratio of the contact ellipse semi-axes.
In (29)–(31) we introduce the short-hand notations1

N(ζ) =

∫

∞

0

dt
√

(1 + ζt)(1 + t)t
, (33)

M(ζ) =

∫

∞

0

dt

(1 + t)
√

(1 + t)(1 + ζt)t
. (34)

From the above relations follow the size of the contact
area, a, b and the deformation ξ as functions of the elastic
force Fel and (known) geometric coefficients B1 and B2.

The dependence of the force Fel on the deformation
ξ may be obtained from scaling arguments. If we rescale
a2 → αa2, b2 → αb2, ξ → αξ and Fel → α3/2Fel, with α
constant, eqs. (29)–(31) remain unchanged. That is, when
ξ changes by the factor α, the semi-axis a and b change
by the factor α1/2 and the force by the factor α3/2, i.e.,
a ∼ ξ1/2, b ∼ ξ1/2 and

Fel = const ξ3/2. (35)

The dependence (35) holds true for all smooth convex bod-
ies in contact. To find the constant in (35) we divide (31)
by (30) and obtain the transcendental equation

B2

B1
=

√
ζM (1/ζ)

M(ζ)
(36)

for the ratio of semi-axes ζ. Let ζ0 be the root of eq. (36),
then a2 = ζ0b

2 and we obtain from eqs. (29), (30):

ξ =
FelD

π

N(ζ0)

b
, (37)

B1 =
FelD

π

M(ζ0)

ζ0b3
, (38)

where N(ζ0) and M(ζ0) are pure numbers. Equations (37)
and (38) allow us to find the semi-axes b and the elastic
force Fel as functions of the compression ξ. Hence we ob-
tain the force, that is, we get the according constant in
eq. (35) [27]

Fel =
π

D

(

M(ζ0)

B1ζ0N(ζ0)

)1/2

ξ3/2 = C0 ξ3/2. (39)

Similarly we can relate the deformation ξ and the semi-
axes a of the contact ellipse [27]

a =

(

M(ζ0)

N(ζ0)B1

)1/2

ξ1/2. (40)

Note that ζ0 is a constant determined by the collision ge-
ometry.

1 The function N(ζ) and M(ζ) may be expressed as a com-
bination of the Jacobian elliptic functions E(ζ) and K(ζ) [26].

For the special case of contacting spheres of the same
material (a = b), the constants B1 and B2 read

B1 = B2 =
1

2

(

1

R1
+

1

R2

)

=
1

2

1

Reff
. (41)

In this case ζ0 = 1, N(1) = π, and M(1) = π/2, leading
to the solution of (37), (38)

a2 = Reff ξ, (42)

Fel = ρξ3/2, ρ ≡ 2Y

3(1 − ν2)

√
Reff , (43)

where we use the definition (32) of the constant D. This
contact problem has been solved by Heinrich Hertz in
1882 [13]. It describes the force between elastic particles.
For inelastically deforming particles it describes the repul-
sive force in the static case.

4 The perturbation scheme

For the most applications the viscous forces are signifi-
cantly smaller than the elastic forces and the material of
the bodies is rigid enough to neglect the inertial effects for
impact velocities which are not very high. Let us estimate
the magnitude of different terms in eq. (1). This may be
easily done using the dimensionless units. For the length
scale we take R, which corresponds to the characteristic
size of colliding bodies, while for the time scale we use τc

—the collision duration. Then v0 = R/τc is the charac-
teristic velocity at the impact. Taking into account that
differentiation with respect to a coordinate yields for di-
mensionless quantities the factor 1/R, and with respect to
time – 1/τc, we obtain

∇σv ∼ λ1 ∇σel, λ1 = τrel/τc, (44)

ρü ∼ ρẅ ∼ λ2 ∇σel, λ2 = v2
0/c2. (45)

Here c2 = Y/ρ and τrel = η/Y characterize respectively
the speed of sound and the microscopic relaxation time in
the material and η ∼ η1 ∼ η2 [19].

Neglecting terms, of the order of λ1 and λ2 we get

∇ · σ̂el(u) = 0, ∇ · σ̂el(w) = 0, (46)

which yields the static displacement fields u = u(r) and
w = w(r). This approximation corresponds to the quasi-
static approximation, used in the literature [19, 21,22,28,
29]. Neglecting terms of the order λ2 but keeping these of
the order of λ1, leads to the following equations:

∇ ·
(

σ̂el(u) + σ̂v(u̇)
)

= 0, ∇ ·
(

σ̂el(w) + σ̂v(ẇ)
)

= 0.
(47)

That is, to go beyond the quasi-static approximation one
needs to find the solution of eqs. (47) which contains both
the displacement fields u, w, and its time derivatives, u̇,
ẇ. Equations (47) need to be supplemented by the bound-
ary conditions. These correspond to vanishing stress on
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the free surface and given displacement in the contact
area.

In a vast majority of applications λ1 = τrel/τc ≪ 1,
which implies that the viscous stress is small as compared
to the elastic stress. This allows to solve eq. (47) perturba-
tively, as a series in a small parameter. Here we follow the
standard perturbation scheme, see e.g. [6]: To notify the
order of different terms we introduce a “technical” small
parameter λ ∼ λ1, which at the end of the computations
is to be taken as one. Hence one can write

σ̂ = σ̂(0) + λσ̂(1) + λ2σ̂(2) + . . . (48)

and, respectively,

u(r) = u
(0)(r) + λu

(1)(r) + λ2
u

(2)(r) + . . . , (49)

w(r) = w
(0)(r) + λw

(1)(r) + λ2
w

(2)(r) + . . . . (50)

Substituting the expansions (48) and (49), (50) into
eq. (47) yields a set of equations for different order in λ.
Zero-order equations with the according boundary condi-
tions read

∇ · σ̂el
(

u
(0)

)

= 0, ∇ · σ̂el
(

w
(0)

)

= 0,

B1x
2 + B2y

2 + u(0)
z (x, y, 0) + w(0)

z (x, y, 0) = ξ, (51)

while the first-order equations with the boundary condi-
tions have the form

∇ ·
(

σ̂el
(

u
(1)

)

+ σ̂v
(

u̇
(0)

)

)

= 0,

∇ ·
(

σ̂el
(

w
(1)

)

+ σ̂v
(

ẇ
(0)

)

)

= 0, (52)

u(1)
z (x, y, 0) + w(1)

z (x, y, 0) = 0,

and so on. Note that the zero-order equation (51) cor-
responds to the case of a static contact which has been
considered in detail above. In particular, it yields the

zero-order fields u
(0)
z and w

(0)
z and zero-order elastic force

F el(0), equal to that of the static case, eqs. (24), (25)
and (39). This also corresponds to the quasi-static approx-
imation widely used in the literature, e.g. [19,21,22,28,29].
Also note that in the proposed perturbation scheme, only
zero-order problem (51) has non-zero boundary condi-
tions, corresponding to the boundary conditions (4) of
the initial problem. All other, high-order perturbation
equations, have simple boundary conditions of the form,

u
(k)
z (x, y, 0)+w

(k)
z (x, y, 0) = 0, k = 1, 2, . . .. Such partition

of the boundary conditions is justified due to the linearity
of the problem.

Note that for the zero-order solution the condition
σel

zz(u
(0)) = σel

zz(w
(0)) is fulfilled at the contact plane

z = 0, as it directly follows from the construction of the
solution. For the first-order solution, however, we need
to additionally request the consistency condition for the
first-order stress tensor:

(

σv
zz

(

u̇
(0)

)

+ σel
zz

(

u
(1)

)

)
∣

∣

∣

z=0
=

(

σv
zz

(

ẇ
(0)

)

+ σel
zz

(

w
(1)

)

) ∣

∣

∣

z=0
, (53)

which implies the equivalence of the first-order stress ten-
sors, expressed in terms of the displacement and displace-
ment rate of the upper and lower bodies.

5 First-order solution: Beyond quasi-static

approximation

Again we will consider the upper body with z > 0 and
introduce, for convenience, the following notations:

σ̂el
(

u
(0)

)

= σ̂el (0), σ̂el
(

u
(1)

)

= σ̂el (1),

σ̂v
(

u̇
(0)

)

= σ̂v (1), etc.

With this notations and using eqs. (2), (3) and (11) we
write

σv
ij

(

u̇
(0)

)

= σ
v(1)
ij =

η1

E1
σ̇

el(0)
ij

+

(

η2 − η1
E2

E1

)

(1 + 2K(0))
∂ḟ (0)

∂z
δij (54)

and accordingly the divergence of this tensor

∇jσ
v(1)
ij =

[

2η1K
(0) + (1 + 2K(0))

(

η2 +
η1

3

)]

∇i
∂ḟ (0)

∂z

=
3(E1η2 − E2η1)

(4E1 + 3E2)
∇i

∂ḟ (0)

∂z
, (55)

where eqs. (10), (11) and eq. (13) for K(0) have been used.

If we now apply eq. (21) for ∂ḟ (0)/∂z and again eq. (13)
for the constant K(0), we find the zz-component of the
first-order dissipative tensor on the contact plane, z = 0

σv(1)
zz (x, y, 0) = ασ̇el(0)

zz (x, y, 0), (56)

α =
3η2 + η1

E1 + 3E2
. (57)

Similar relation may be obtained for the lower body. Using
the definitions of E1 and E2 the coefficient α reads for each
of the bodies

αi =
(1 + νi)(1 − 2νi)

Yi

(

2η2(i) +
2

3
η1(i)

)

, (58)

where the subscript i = 1, 2 specifies the body, i = 1 for
the upper body and i = 2 for the lower one. The above
relation corresponds to the according approximation of
ref. [19] and coincides with the result of [21,22], where the
necessary corrections have been introduced. Note, how-
ever, that the quasi-static approximation occurs to be in-
consistent for the case of contact of particles of different
material: Indeed, the condition (53) is possible only if the
first-order elastic terms are taken into account. Obviously,
this may not be achieved within the quasi-static approx-
imation, which uses only the first-order dissipative stress

σ
v(1)
zz , corresponding to σv

zz(u̇
(0)) and σv

zz(ẇ
(0)). The val-

ues of σ
v(1)
zz on the contact plane are different for the upper
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and lower body for different materials, since α1 
= α2 (see
eqs. (56)–(58)), that is, the third Newton’s law for this
case is violated.

Another inconsistency of the quasi-static approxima-
tion is related to vanishing dissipation for the materials
with ν → 1/2, which corresponds to the substances with
the elastic shear modulus much smaller than the bulk
modulus2, E1/E2 = (3/2)(1 − 2ν)/(1 + ν), as for rub-
ber, e.g. [24]. In this case (1 − 2νi) → 0 and αi → 0,
as it follows from eq. (58). Obviously, there are no physi-
cal mechanisms in these materials that could prevent the
energy dissipation.

Consider now the first-order equation (52) for the up-
per body

∇j

(

σ
el(1)
ij + σ

v(1)
ij

)

= 0. (59)

Due to the linearity of the problem, one can represent
the first-order displacement field as a sum of two parts,
u

(1) = ū
(1) + ũ

(1), which correspond to the two parts of

the elastic tensor, σ
el(1)
ij = σ̃

el(1)
ij (ũ(1)) + σ̄

el(1)
ij (ū(1)). Here

the first part of σ
el(1)
ij is the solution of the inhomogeneous

equation with homogeneous boundary conditions

∇j σ̃
el(1)
ij = −∇jσ

v(1)
ij , (60)

σ̃el(1)
xz

∣

∣

∣

z=0
= σ̃el(1)

yz

∣

∣

∣

z=0
= σ̃el(1)

zz

∣

∣

∣

z=0
= 0, (61)

while the second part is the solution of the homogeneous

equation

∇j σ̄
el(1)
ij = 0, (62)

with a given first-order displacement u
(1)
z at the contact

plane; this is to be obtained from the boundary condi-
tion (52) and consistency condition (53). The boundary
problem (62) is exactly the same as the above problem (51)
for the zero-order functions. Hence the same relation as
eq. (24) holds true for the first-order functions, that is,

ū(1)
z

∣

∣

∣

z=0
= − (1 − ν2

1)

πY1

×
∫∫

S

σ̄
el(1)
zz (ū(1)(x′, y′, z = 0)) dx′ dy′

|r − r′| .

(63)

To solve eq. (60) we write the displacement field ũ
(1)

in a form, similar to this of the zero-order solution (9)

ũ
(1) = f (1)

ez + ∇ϕ(1), (64)

where ϕ(1) = K(1)zf (1) +ψ(1), with K(1) being some con-
stant and f (1) and ψ(1) harmonic functions. Then we can

2 The bulk and shear moduli respectively read, E2 = (1/3)Y/
(1−2ν) and E1 = (1/2)Y/(1+ν) (K and µ in notations of [24]),
where Y is the Young modulus and ν is the Poisson ratio.
For materials with the Poisson ratio close to 1/2 (ν → 1/2)
and finite bulk modulus E2, the Young modulus Y is small.
Hence for the materials with ν → 1/2 the bulk modulus E2 is
significantly larger than the shear modulus E1.

write the stress tensor σ̃
el(1)
ij as

σ̃
el(1)
ij =

(

1 + 2K(1)
)

[

E1

(

δjz∇if
(1) + δiz∇jf

(1)
)

+

(

E2 −
2

3
E1

)

∂f (1)

∂z
δij

]

+ 2E1K
(1)z∇i∇jf

(1)

+2E1∇i∇jψ
(1). (65)

If we choose K(1) = − 1
2 the above stress tensor takes the

form

σ̃
el(1)
ij = −zE1∇i∇jf

(1) + 2E1∇i∇jψ
(1) (66)

and the boundary conditions (61) read

σ̃el(1)
xz

∣

∣

∣

z=0
=

∂

∂x

(

∂ψ(1)

∂z

)∣

∣

∣

∣

z=0

= 0, (67)

σ̃el(1)
yz

∣

∣

∣

z=0
=

∂

∂y

(

∂ψ(1)

∂z

)∣

∣

∣

∣

z=0

= 0. (68)

Therefore we conclude

∂ψ(1)

∂z

∣

∣

∣

∣

z=0

= const = 0, (69)

where the last equation follows from the condition that
ψ(1) vanishes at the infinity, x, y → ∞, where the defor-
mation is zero. Since ψ(1) is a harmonic function, we con-
clude that the vanishing normal derivative on a boundary,
eq. (69), implies that the function vanishes everywhere,
that is, ψ(1)(x, y, z) = 0 (see e.g. [25]). Hence

σ̃
el(1)
ij = −E1z∇i∇jf

(1) (70)

and the third boundary condition, σ̃
el(1)
zz = 0 at z = 0 is

automatically fulfilled. Taking into account that function
f (1) is harmonic, we obtain

∇j σ̃
el(1)
ij = −E1∇i

∂f (1)

∂z
.

Using the above equation together with eq. (55) we recast
eq. (60) into the form

E1∇i
∂f (1)

∂z
= −3(E2η1 − E1η2)

(4E1 + 3E2)
∇i

∂ḟ (0)

∂z
,

which implies the relation between functions f (1) and ḟ (0):

f (1) = −βḟ (0), (71)

β =
3(E2η1 − E1η2)

E1(3E2 + 4E1)
. (72)

Using eq. (64) with K(1) = − 1
2 we write for ũ

(1)
z

ũ(1)
z =

1

2
f (1) − z

2

∂f (1)

∂z
; (73)
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substituting there f (1) from eq. (71) we arrive at

ũ(1)
z = −1

2
β

(

ḟ (0) − z
∂ḟ (0)

∂z

)

, (74)

where f (0) is given by eq. (22). Thus, the above relation

presents the solution for the displacement ũ
(1)
z . Taking

now into account the relation (23) between f (0) and u
(0)
z

at the contact plane, as well as the expression (24) for u
(0)
z

there, we find for ũ
(1)
z at z = 0:

ũ(1)
z =

(1 − ν2
1)

πY1

∫∫

S

β1σ̇
el(0)
zz (x′, y′, z = 0) dx′ dy′

|r − r′| ,

(75)
where the subscript “1” indicates that the constant β1

refers to the upper body. Similar considerations may be
done for the lower body, z < 0, yielding

w̄(1)
z

∣

∣

∣

z=0
= − (1 − ν2

2)

πY2

×
∫∫

S

σ̄
el(1)
zz (w̄(1)(x′, y′, z = 0)) dx′ dy′

|r − r′| ,

(76)

and

w̃(1)
z =

(1 − ν2
2)

πY2

∫∫

S

β2σ̇
el(0)
zz (x′, y′, z = 0) dx′ dy′

|r − r′| .

(77)
Now we apply the consistency condition (53), using eq.
(56) for both bodies

(

α1σ̇
el(0)
zz + σ̄el(1)

zz (ū(1))
) ∣

∣

∣

z=0
=

(

α2σ̇
el(0)
zz + σ̄el(1)

zz (w̄(1))
)

∣

∣

z=0
, (78)

where we also take into account that the following parts
of the stress tensor vanish on the contact plane:

σ̃el(1)
zz

(

ũ
(1)

)

∣

∣

∣

z=0
= σ̃el(1)

zz

(

w̃
(1)

)

∣

∣

∣

z=0
= 0.

Equation (78) then yields

σ̄el(1)
zz

(

w̄
(1)

)

∣

∣

∣

z=0
=

(α1 − α2)σ̇
el(0)
zz

∣

∣

∣

z=0
+ σ̄el(1)

zz

(

ū
(1)

)

∣

∣

∣

z=0
. (79)

Now we use the boundary condition in eq. (52)

u(1)
z + w(1)

z = ū(1)
z + ũ(1)

z + w̄(1)
z + w̃(1)

z = 0,

and applying eqs. (63), (75), (76) and (77) for ū
(1)
z , ũ

(1)
z ,

w̄
(1)
z and w̃

(1)
z we obtain

∫∫

S

[

(β1D1 + β2D2)σ̇
el(0)
zz − D1σ̄

el(1)
zz

(

ū
(1)

)

− D2σ̄
el(1)
zz

(

w̄
(1)

)

]∣

∣

∣

z=0

dx′ dy′

|r − r′| = 0,

where we introduce the short-hand notations

Di = (1 − ν2
i )/Yi, i = 1, 2.

From the above equation, together with eq. (79), the re-
lation for the first-order elastic tensor follows:

σ̄el(1)
zz (ū(1))

∣

∣

∣

z=0
=

[

β1D1 + β2D2

D1 + D2
− D2(α1 − α2)

D1 + D2

]

× σ̇el(0)
zz

∣

∣

∣

z=0
. (80)

Finally we obtain, taking into account that the total first-
order stress on the contact plane is a sum of the two parts
—the elastic one, given by eq. (80), and the dissipative

part σ
v(1)
zz from eq. (56), which yields,

σ(1)
zz

∣

∣

∣

z=0
= (σv(1)

zz + σel(1)
zz )

∣

∣

∣

z=0
= A σ̇el(0)

zz

∣

∣

∣

z=0
, (81)

where

A =
(α1 + β1)D1 + (α2 + β2)D2

D1 + D2
. (82)

Again we take into account that the component σ̃
el(1)
zz (ũ(1))

of the stress tensor vanishes on the contact plane. The
constant A may be written, using eq. (58) and (72) for αi

and βi, as

A =
γ1D1 + γ2D2

D1 + D2
,

γi =
1

Yi

(

1 + νi

1 − νi

)[

4

3
η1(i)(1−νi + ν2

i ) + η2(i)(1 − 2νi)
2

]

,

(83)

which is the main result of our study. With the above
eqs. (28), (39) and (40) we can write the explicit expression

for the viscous pressure P
v(1)
z = −σ

(1)
zz |z=0 acting between

the colliding bodies

P v(1)
z (x, y) =

3AB1

4DM(ζ0)

ȧ
√

a2 − (x2 + y2ζ0)
, (84)

where a depends on ξ according to eq. (40) and all other
notations have been introduced in sect. 3.

6 Dissipative force

Now we can write the dissipative force acting between
particles. It corresponds to the force associated with the
viscous constants, that is, with the first-order stress ten-

sor σ
(1)
zz . Integrating this stress over the contact area, we

obtain, using eq. (81)

F v(1)
z = −

∫∫

S

σ(1)
zz (x, y)|z=0 dxdy

= −A
∂

∂t

∫∫

S

σel(0)
zz (x, y)|z=0 dxdy,



Eur. Phys. J. E (2015) 38: 55 Page 9 of 9

that is
F v(1)

z = AḞ el(0)
z , (85)

where F
el(0)
z is the normal force corresponding to the elas-

tic reaction of the medium. It is equal to the Hertzian
force, eq. (39); taking the time derivative of this force we
finally obtain:

F v(1)
z =

3

2
AC0

√

ξξ̇ . (86)

Here the constant C0, defined by eq. (39), is determined
by the geometry of the colliding bodies and their material
properties (see the discussion after eq. (39)).

Hence the total force acting between two viscoelastic
bodies reads in the linear approximation with respect to
the dissipative constants:

Ftot = C0ξ
3/2 +

3

2
AC0

√

ξξ̇ , (87)

where the relation between the deformation ξ and the
semi-axis a of the contact ellipse is given by eq. (40) as in
the static Hertz theory. Note however, that in the Hertz
theory the deformation ξ is unambiguously related to the
total force acting between the bodies and, thus, one can
determine the semi-axis of a contact ellipse a either by
the deformation ξ or by the total force. For a visco-elastic
contact, on the contrary, the size of the contact ellipse
is determined by deformation ξ (or equivalently, by the
elastic part of the total force), but not by the total force.

7 Conclusion

We derive a new expression for the dissipative force acting
between viscoelastic bodies during an impact. Contrary
to the previous theories, based on the physically plausible
but non-rigorous approach, our theory exploits mathemat-
ically rigorous perturbation scheme. The small parameter
in this approach is the ratio of the microscopic relaxation
time and the impact duration. We compute zero and first-
order terms in this perturbation expansion and find the
inter-particle dissipative force. The new expression for the
dissipative force noticeably differs from the previous one,
obtained within the quasi-static approximation; it has a
physically correct behavior for the case of colliding bodies
of different materials. This has not been achievable within
the quasi-static approximation. Moreover, our new theory
does not suffer from the inconsistency of the previous the-
ory with respect to materials which have the elastic bulk
modulus much larger than the shear one. While the previ-
ous, quasi-static theory predicts the non-physical vanish-
ing dissipation, the new theory implies dissipation, similar
to that for “common” materials.

In the present study we neglect the inertial effects,
that is, we assume that the characteristic velocity of the
problem is much smaller than the speed of sound in the
bodies. The general approach presented in our study may
be, however, further developed to take into account the
inertial effects as well as high-order terms in the pertur-
bation series.

DSG and AVP acknowledge financial support from the Russian
Science Foundation (grant no. 14-21-00090).
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